ELEVATED TEMPERATURE COATINGS: SCIENCE AND TECHNOLOGY IV

Proceedings of a Symposium sponsored by
the Surface Engineering Committee of
the Materials Processing & Manufacturing Division (MPMD) and
the Corrosion and Environmental Effects Committee (Jt. with ASM/MSCTS) of
the Structural Materials Division (SMD) of

Held at the TMS 2001 Annual Meeting in
New Orleans, Louisiana, USA

Edited by:
Narendra B. Dahotre
Janet M. Hampikian
John E. Morral

A Publication of

TMS
Partial funding for this publication was provided by the Seeley W. Mudd Fund
TABLE OF CONTENTS

PREFACE... vii

THERMAL BARRIER COATINGS

ACCELERATED DURABILITY TESTING OF COATINGS FOR GAS TURBINES... 1
 M.J. Stiger, R. R. Handoko, J.L. Beuth,
 F.S. Pettit and G.H. Meier

SYNTHESIS OF ALPHA-Al₂O₃ TEMPLATE ON Ni SUPERALLOY SURFACE BY CHEMICAL VAPOR DEPOSITION .. 15
 Y.-F. Su, M. Torzilli, J.D. Meyer, W.Y. Lee,
 M.J. Lance, C.J. Rawn and S. Ruppi

CHARACTERIZATION OF COMMERCIAL EB-PVD TBC SYSTEMS WITH CVD (Ni,Pt)Al BOND COATINGS .. 29
 J.A. Haynes, M.J. Lance, B.A. Pint and
 I.G. Wright

INTERFACIAL MICROSTRUCTURE FOR As-DEPPOSITED AND CYCLED-TO-FAILURE THERMAL BARRIER COATING .. 45
 Altaf H. Carim, Tabbeth A. Dobbins,
 Merrilea J. Mayo and Lucille A. Giannuzzi

ADVANCED THERMAL COATING SYSTEMS: RESEARCH AND DEVELOPMENT TRENDS .. 61
 C. Leyens, U. Schulz and M. Peters

EFFECT OF Hf ADDITIONS TO Pt ALUMINIDE BOND COATS ON EB-PVD TBC LIFE .. 77
 James Nesbitt, Ben Nagaraj and Jeffrey Williams

DAMAGE INDUCED BY THERMAL CYCLING OF THERMAL BARRIER COATINGS .. 93
 Vladamir K. Tolpygo and David R. Clarke

MODELING THERMAL STRESSES AND MEASURING THIN FILM CTE IN MoSi₂ AND MoSi₂+SiC COMPOSITE COATINGS ON MOLYBDENUM .. 109
 Earl C. Hixson, C. Suryanarayana,
 Graham G.W. Mustoe and John J. Moore
INTERDIFFUSION OF COATINGS

INTERDIFFUSION BEHAVIOR IN AN ALUMINIDE COATED NICKEL-BASE ALLOY AT 1150°C ... 119
 B. Gleeson, E. Basuki and A. Crosky

PREDICTING INTERDIFFUSION MICROSTRUCTURE USING THE PHASE FIELD APPROACH ... 133
 Kaisheng Wu, Yunzhi Wang and John E. Morral

SYNTHESIS OF Hf-DOPED CVD β–NiAl COATING BY CONTINUOUS DOPING PROCEDURE ... 143
 G.Y. Kim, J.D. Meyer, L.M. He, W.Y. Lee and J.A. Haynes

A NEW ANALYSIS FOR THE DETERMINATION OF TERNARY INTERDIFFUSION COEFFICIENTS FOR Ni-Cr-Al AND Fe-Ni-Al ALLOYS ... 159
 Y.H. Sohn and M.A. Dayananda

IN-SITU PROCESSING OF NICKEL ALUMINIDE COATINGS ON STEEL SUBSTRATES ... 171
 Rajesh Ranganathan, Olga Vayena, Teiichi Ando, Charalabos C. Doumanidis and Craig A. Blue

METALLIC/INTERMETALLIC COATINGS AND OXIDATION

DEVELOPMENT OF PROTECTIVE COATINGS FOR HIGH-TEMPERATURE METALLIC MATERIALS ... 181
 R. Keith Bird, Terryl A. Wallace and Sankara N. Sankaran

RARE EARTH OXIDE COATINGS FOR LIFE EXTENSION OF CHROMIA FORMING ALLOYS ... 197
 Stela M.C. Fernandes and Lalgudi V. Ramanathan

HIGH TEMPERATURE SURFACE OXIDATION CHEMISTRY OF IN-738LC ... 209
 Sudipta Seal, Leyda A. Bracho, Vimal Desai and Kirk Scammon

OXIDATION KINETICS AND MORPHOLOGY OF LASER SURFACE ENGINEERED HARD COATING ON ALUMINUM ... 219
 Narendra B. Dahotre and Lalitha R. Katipelli

THE INFLUENCE OF METALLIC COATINGS ON THE STRUCTURE, WETTING, AND MECHANICAL STRENGTH OF CERAMIC/METAL INTERFACES ... 233
 Natalia Sobczak and Rajiv Asthana
CERAMIC COATINGS

FUNCTIONALLY GRADED MATERIALS PRODUCED BY LASER CLADDING .. 247
Jeff T. De Hosson and Yutao Pei

ELECTROPHORETIC AND ELECTROLYTIC DEPOSITION OF CERAMIC FILMS 263
I. Zhitomirsky

YTTRIA STABILIZED ZIRCONIA/ALUMINA COATINGS DEPOSITED BY COMBUSTION CHEMICAL VAPOR DEPOSITION ... 277
D.W. Stollberg, J.M. Hampikian, M. McIntosh and W.B. Carter

HIGH TEMPERATURE OXIDATION OF VC COATED H13 STEEL .. 291
Swapnil Shah and Narendra B. Dahotre

NEAR NET SHAPE FORMING OF HAFNIUM-BASED CERAMIC COMPONENTS: SYNTHESIS AND CHARACTERIZATION ... 301
Arvind Agarwal, Tim McKeechnie, Stuart Starett and Mark M. Opeka

PROTECTIVE CVD MULLITE COATINGS WITH CONTROLLED COMPOSITION AND MICROSTRUCTURE .. 317
S.M. Zemskova, J.A. Haynes and K.M. Cooley

THE SPECTRAL EMITTANCE AND STABILITY OF COATINGS AND TEXTURED SURFACES FOR THERMOPHOTOVOLTAIC (TPV) RADIATOR APPLICATIONS ... 327
B.V. Cockeram and J.L. Hollenbeck

TEXTURED DIAMOND FILMS ON Si AND Cu SUBSTRATES BY HFCVD TECHNIQUE ... 343
Ashok. Kumar, A.K. Sikder, J. Mark Anthony and D.S. Misra

AUTHOR INDEX ... 357

SUBJECT INDEX ... 359
Elevated Temperature Coatings: Science and Technology IV is the fourth volume in a series of invited and contributed papers presented in the symposium: High Temperature Coatings IV. This symposium was organized by Narendra B. Dahotre, Janet M. Hampikian and John E. Morral and held in New Orleans, Louisiana, during the TMS annual meeting, February 11-15, 2001. This volume consists of invited and contributed papers from national and international researchers representing universities, federal laboratories and industries. Thus, it provides a rich diversity of material in the research area of High Temperature Coatings. The sponsorship of the TMS Surface Engineering Committee of Materials Design and Manufacturing Division, the Joint TMS/ASM Corrosion and Environmental Effects Committee of Structural Materials Division, and the Materials Science Critical Technology Sector of ASM is gratefully acknowledged.

The topic of High Temperature Coatings is one that is motivated by the increasing need for improved surface characteristics from a wide range of materials without compromising bulk characteristics such as mechanical performance. An example of this is the current thrust toward achieving higher operating temperature in industrial gas turbine engine components through use of thermal barrier coatings in high temperature gradient areas such as on turbine nozzles and blades. The specific materials topics covered in this symposium include: Thermal Barrier Coatings, Interdiffusion of Coatings, Metallic/Intermetallic Coatings, and Oxidation and Ceramic Coatings. Thus this time in addition to being concerned with the adherence of thermal barrier coatings and the oxidation resistance of metallic coatings, one group of papers was concerned with interdiffusion and microstructural changes that occur in metallic coatings during service.

We are grateful for the institutional support provided by the University of Tennessee Space Institute, the School of Materials Science and Engineering at the Georgia Institute of Technology, and the Institute of Materials Science and the School of Engineering at the University of Connecticut. Finally, we appreciate the continuing assistance from TMS for the Symposia on High Temperature Coatings.

Professor Narendra B. Dahotre
Department of Materials Science and Engineering
Laser Materials Processing Group
The University of Tennessee
Space Institute
10521 Research Drive, Suite 400
Knoxville, Tennessee 37932

Professor Janet M. Hampikian
School of Materials Science and Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0245

Professor John E. Morral
Department of Metallurgy and Materials Engineering
Institute of Materials Science
University of Connecticut
Storrs, CT 06268-3136
AUTHOR INDEX

A
Agarwal, A., 301
Ando, T., 171
Anthony, J.M., 343
Asthana, R., 233

B
Basuki, E., 119
Beuth, J.L., 1
Bird, R.K., 181
Blue, C.A., 171
Bracho, L.A., 209

C
Carim, A.H., 45
Carter, W.B., 277
Clarke, D.R., 93
Cockeram, B.V., 327
Cooley, K.M., 317
Crosky, A., 119

D
Dahotre, N.B., 219, 291
Dayananda, M.A., 159
De Hosson, J.T., 247
Desai, V., 209
Dobbins, T.A., 45
Doumanidis, C.C., 171

F
Fernandes, S.M.C., 197

G
Giannuzzi, L.A., 45
Gleeson, B., 119

H
Hampikian, J.M., 277
Handoko, R.R., 1
Haynes, J.A., 29, 143, 317
He, L.M., 143
Hixson, E.C., 109
Hollenbeck, J.L., 327

K
Katipelli, L.R., 219
Kim, G.Y., 143
Kumar, A., 343

L
Lance, M.J., 15, 29
Lee, W.Y., 15, 143
Leyens, C., 61

M
Mayo, M.J., 45
McIntosh, M., 277
McKeechnie, T., 301
Meier, G.H., 1
Meyer, J.D., 15, 143
Misra, D.S., 343
Moore, J.J., 109
Mustoe, G.G.W., 109

N
Nagaraj, B., 77
Nesbitt, J., 77

O
Opeka, M.M., 301

P
Pei, Y., 247
Peters, M., 61
Pettit, F.S., 1
Pint, B.A., 29

R
Ramanathan, L.V., 197
Ranganathan, R., 171
Rawn, C.J., 15
Ruppi, S., 15
S
Sankaran, S.N., 181
Scammon, K., 209
Schulz, U., 61
Seal, S., 209
Shah, S., 291
Sikder, A.K., 343
Sobczak, N., 233
Sohn, Y.H., 159
Starett, S., 301
Stiger, M.J., 1
Stollberg, D.W., 277
Su, Y.-F., 15
Suryanarayana, C., 109

T
Tolpygo, V.K., 93
Torzilli, M., 15

V
Vayena, O., 171

W
Wallace, T.A., 181
Wang, Y., 133
Williams, J., 77
Wright, I.G., 29
Wu, K., 133

Z
Zemskova, S.M., 317
Zhitomirsky, I., 263
SUBJECT INDEX

602CA Alloy
Composition, 184
Density, 184
Ductility, 184
Oxidation
 Static, 188-192
Yield strength, 184

A
AISI H13 Steel, 292-295
Al/Alumina Couple, 233
Al/Graphite Couples, 233
Alpha-Al₂O₃, 15
Aluminide, 120
Alumina, 30-44
 Electrolytic deposition, 268, 273
 Electrophoretic deposition, 268, 270
 Fibers, 270
Aluminum Alloys, 248
 Al-50 w/o Si, 248
Analysis of Diffusion Couple, 160
As-Sprayed Structure
 Microcracks, 310
 Porosity, 309-310, 312
 Splats, 310

B
Bond Coat(s), 63, 64, 69-75, 94-106, 144
 Aluminide, 63, 74, 75, 79
 McrAlY-type, 63, 73, 74, 75
 Pt-modified aluminate, 79
Buckling, 74
 Small scale buckling, 74
 Large scale buckling, 74
Buffer Layer, 346, 351

C
Catalytic Efficiency
 Coated Inconel 617, 194
 Definition, 183
 Test procedures, 187
Cavities, 98-100

Characterization
 Focused ion beam (FIB), 50, 51
 Electron microscopy
 Scanning (SEM), 49-52, 55, 56
 Transmission (TEM), 49-57
 Energy-dispersive spectroscopy (EDS), 50, 54, 55
Chemical Vapor Deposition (CVD), 344
Chromia
 Forming alloys, 198
Ceramic Coating
 Alternative, 66, 67, 68
 Electrolytic deposition, 265, 267, 269, 270, 273
 Electrophoretic deposition, 265, 267, 269, 270
 PYSZ, 63, 65, 68, 69
Coating(s), 198, 328
 Oxidation effects, 188-194
 Procedures, 186
 Sol-gel, 184-185
Coefficient of Thermal Expansion (CTE)
 Measuring thin film CTE, 115-117
 of MoSi₂, 112
 of SiC, 112
Combustion Chemical Vapor Deposition (CCVD), 278
Composite Coating, 292, 294, 298-300
Compressive Stress, 355
Computer Simulation, 134, 138
Contact Angles, 233
CVD, 15, 144

D
Deposition Rate
 Electrolytic deposition, 267
 Electrophoretic deposition, 267
Diamond
 Electrophoretic seeding, 270, 271
 Charging mechanism, 271
 Fiber, 271
 Films, 344
Die-Casting, 292, 293, 300
 Dies, 292, 293, 300
Diffusion, 224
 Diffusion coating, 120
 Diffusion couple, 136-138
 Diffusion path, 136-137

E
Electrode Reactions
 Base generation, 265
 Hydrolysis, 267
Electrodeposition
 Electrolytic deposition, 265, 268, 269, 270, 273
 Electrophoretic deposition, 265, 267, 269, 270
Electron Beam Physical Vapor Deposition, 64
Emissivity, 328
Emittance
 Coated Inconel 617, 192-193
 Test procedures, 187
Eutectic, 248, 252
Excimer Laser, 346

F
Fe-Ni-Al, 160
Finite Element Modeling
 Boundary conditions, 111
 Modeling optimization, 112-113
 of Thermal stresses, 113-115
Fracture Toughness, 278
Functionally Graded Materials (FGMs), 248

G
Gamma TiAl
 Composition, 184
 Density, 184
 Oxidation
 Static, 182
 Yield strength, 184

H
Hf-Doping, 144
HFCVD, 345, 346
High-Density Infrared (HDI)
 Equipment, 173-174
 Processing parameters, 174
 Processing results, 176-179
High Temperature Coating, 134-135, 160
High Temperature Oxidation, 214

I
Inconel 617 Alloy
 Catalytic efficiency, 194
 Composition, 184
 Density, 184
 Ductility, 188
 Emittance, 192-193
 Oxidation
 Dynamic, 193-194
 Static, 188-192
 Yield strength, 184
Interdiffusion
 Coefficients, 160
 Cross-term effect, 130
 Diffusion paths, 126-128, 129-131
 Fluxes, 160
 Uphill diffusion, 123, 128-130
Interface
 Separation, 101-105
 Strength, 233
 Structure, 233

L
Laser Cladding, 248
Laser Surface Engineering, 220, 221, 292-294, 300

M
Materials
 Ni-Cr-Al-Y, 46-59
 Yttria-stabilized zirconia, 46-59
MCrAlY Coating(s), 160
Microstructure
 Coarsening, 136-137
 Grain size, 57
 Interdiffusional microstructures, 134
 Interfaces, 46-59
Modeling, 134-135
Morphological Characterization, 198
Morphology, 220, 222
Moving Interface, 134, 136-138
Mullite, 319
 Chemical vapor deposition (CVD), 319
 Silicon nitride oxidation protection, 319
N

Nanoindentation, 278
Nanostructured Materials
 Electrolytic deposition, 265, 273
 Zirconia, 273
Near Net Shape Forming
 Vacuum plasma spray, 303, 305
Ni Base Superalloy, 210
Ni-Cr-Al, 160
Ni-superalloy, 15
Nickel Aluminide, 144

O

Organoceramic Composites
 Electrolytic deposition, 273
 Polymer, 273
Oxidation, 94-98, 198
 and Interdiffusion, 160
Dynamic
 Exposure procedures, 187
 Weight change for Inconel 617, 193-194
 Kinetics, 220, 221, 222, 225-231, 292, 293, 296-300
Mechanism, 198
Protection, 198
Static
 Effects on ductility, 188
 Exposure procedures, 186
 Microstructural effects, 189-192
 Weight change
 For Gamma TiAl, 192
 for Superalloys, 188-189

P

Parabolic Growth, 211, 212
Phase Field Approach, 134-135, 138
Phase Transformation, 67, 68, 98
 Beta recession, 131
 Kinetics, 131
Plasma Arc,
 Processing parameters, 174
 Processing results, 175
PM 1000 Alloy
 Composition, 184
 Density, 184
 Oxidation
 Static, 188-192
 Yield strength, 184
Powder Morphology, 304, 309
Processing
 Air plasma spraying (APS), 46-59
 High-velocity oxyfuel (HVOF), 55-57
 Oxidation, 46-56
 Thermal cycling, 46-48
Push-Off Test, 233
Pyrolytic Carbon, 354

R

Radiator, 328
Raman Spectroscopy, 344, 346
Rare Earth(s)
 Oxides, 198
 Reactive Element(s), 144
 Hf, 79, 80

S

Sessile Drop Test, 233
Small Angle Grain Boundaries, 248
Sol Gel Process, 198
Sulfur Segregation, 72
Surface Rumpling, 101-103
Surface Texturing, 328

T

TBCs, 30, 31, 32, 34, 37, 39-44
Temperature Gradient, 344, 346
Tenary
 Interdiffusion, 160
 System, 134-135
Texture, 344
TGD, 15
Thermal Barrier Coatings (TBC’s), 15, 46-59, 62-76, 78, 94-106
 Bond strength, 69, 70, 71, 72
 Bond stress, 69-72
 Cyclic furnace life, 80, 83
 Durability, 69, 74
 EB-PVD coatings, 78, 79, 80
 Failure mechanism, 70-73, 94-106
 Failure, 79, 80
 Mode, 69, 70
 Thermal Conductivity, 65, 66
 Thermal Grown Oxide, 63, 68, 69, 70, 72
 Alumina, 63, 72
 Growth stresses, 73, 74
 Residual Stresses, 74
 Thermal Stability, 328
 Thermally Grown Alumina (TGO), 79, 83, 86, 87
 Thermo Gravimetric Analysis, 222, 230, 293
Thermophotovoltaic, 328
Thin Films, 233
Titania
 Electrolytic deposition, 268, 273
 Electrophoretic deposition, 268

U
Ultrahigh Temperature Ceramics (UHTC)
 Hafnium
 Carbide, 303-304, 608, 310-312
 Diboride, 303-304, 308-310
 Nitride, 303-304, 307-308, 312-313

V
Vandium Carbide, 292-295
Voids, 30-44

W
Wettability, 233
Wettability-Bonding Relationships, 233

X
X-Ray Photoelectron Spectroscopy, 211, 212, 213

Y
Yttria Stabilized Zirconia (YSZ), 278
 YSZ/Alumina Composite, 278

Z
Zirconia
 Electrolytic deposition, 273
 Organoceramic composite, 272, 273
 Electrophoretic deposition, 270
 Fibers, 270