Ultrafine Grained Materials II
TABLE OF CONTENTS

Preface... xiii

I. Microstructural Evolution

High Strain Monotonic Deformation-Structure and Strength... 3
 N. Hansen, X. Huang and D.A. Hughes

Influence of Processing Route on Microstructure and Grain Boundary Development During Equal-Channel Angular Pressing of Pure Aluminum ... 15
 T.R. Mc Nelley, D.L. Swisher, Z Horita
 and T.G. Langdon

Equal Channel Angular Pressing of Steels (BCC), Al Alloys (FCC) and Pure Titanium (HCP) ... 25

The Effect of Straig Per Pass on the Microstructure Developed in Aluminum Processed by Equal Channel Angular Extrusion ... 35
 P.L. Sun, P.W. Kao and C.P. Chang

Microstructural Evolution of Titanium Under Twist Extrusion .. 43
 Y. Beygelzimer, V. Varyukhin, D. Orlov, B. Efros,
 V. Stolyarov and H. Salimgareyev

Nanostructure Formation and Carbides Dissolution in Rail Steel Deformed by High Pressure Torsion .. 47
 Yu.V. Ivanisenko, R.Z. Valiev, W. Lojkowski,
 A. Grob and H.-J. Fecht

Grain Refinement and Texture Development in Asymmetrically Rolled Aluminum Alloy Sheets .. 55
 S.-H. Kim, J.K. Lee and D.N. Lee

Ultrafine Grain Formation During Equal Channel Angular Extrusion in an Al-Mg-Sc Alloy ... 65
 R. Kaibyshev, O. Sitdikov and S. Olenyov

Formation of Nanocrystalline Structure in a Ni-20%Cr Alloy .. 75
 N. Dudova, R. Kaibyshev and V. Valitov

Formation of Ultrafine Grains During Intense Plastic Straining in an Al-Li Alloy at 400°C ... 81
 R. Kaibyshev, F. Musin, K. Saytaeva
 and Y. Motohashi
Mechanisms of Formation of Submicron Grain Structures During Severe Deformation

P.B. Prangnell and J.R. Bowen

Grain Refining Mechanisms of Ti During Equal Channel Angular Pressing

Y-S. Him, J. Kim, I. Kim and D.H. Shin

Microstructure Evolution in Nanocrystal Formation During Ball Milling

Z.G. Liu, Y. Xu, K. Tsuchiya and M. Umehato

Formation of Nanocrystalline Structure in Two-Phase Titanium Alloys by Warm Severe Plastic Deformation

G.A. Salishchev, M.A. Murzinova, S.V. Zherebtsov, R.M. Galeyev and O.R. Valiakhmetov

Evolution of Microstructure and Mechanical Behavior of Titanium During Warm Multiple Deformation

G.A. Salishchev, S.V. Zherebtsov and R.M. Galeyev

Effect of Pressure on the Final Grain Size After High Pressure Torsion

T. Hebesberger, R. Pippan and H.P. Stüwe

Heterogeneous Microstructural Evolution and Reactions During Repeated Intense Deformation

R.J. Hebert and J.H. Perepeko

Hardness and Microstructure Changes in Severly Deformed and Recrystallized Tantalum

K.T. Hartwig, S.N. Mathaudhu, M.J. Maier and I. Karaman

II. Processing of Ultrafine-Grained Materials

Homogeneity in Ultrafine-Grained Aluminum Prepared by Equal-Channel Angular Pressing

C. Xu and T.G. Langdon

Processing of an Aluminum-6061 Metal Matrix Composite by Equal-Channel Angular Pressing

Y. Huang, C. Xu, S. Lee, M. Furukawa, Z. Horita and T.G. Langdon

Grain Refinement and Phase Transformations in Al and Fe Based Alloys During Severe Plastic Deformation

S.V. Dobatkin
Phase Transformations in Ultrafine Grained Fe and Fe-Mn Alloys ... 193
 B.M. Efros, V.P. Pilyugin, A.M. Patselov,
 Y.Y. Beygelzimer and N.B. Efros

Ultrafine-Grained Tungsten Produced by SPD Techniques .. 199
 I.V. Alexandrov, G.I. Raab, V.U. Kazyhanov,
 L.O. Shestakova, R.Z. Valiev and R.J. Dowding

Metastable Nanostructured Alloys Processed by Severe Plastic Deformation 209
 V. Stolyarov and R. Valiev

Synthesis of Nd$_2$Ti$_3$O$_7$/Al$_2$O$_3$ Nanocomposites by Spark-Plasma-Sintering and High-Energy Ball-Milling ... 219
 G-D. Zhan, J. Kuntz, J. Wan, J. Garay
 and A.K. Mukherjee

Properties and Microstructure of Alumina-Niobium Nanocomposites
Made by Novel Processing Methods ... 225
 J.D. Kuntz, J. Wan, G-D. Zhan
 and A.K. Mukherjee

Nano-Nano Composites of Silicon Nitride and Silicon Carbide ... 235
 J. Wan, M.J. Gasch and A.K. Mukherjee

The Use of SPD for Fabrication of Bulk Nanostructured Materials from
Ball-Milled Powders .. 245
 G.I. Raab, N.A. Krasilnikov, E. Thiele
 and R. Klemm

Numerical Analysis of Plastic Deformation in Constrained Groove Pressing 253
 J-J. Park and D.H. Shin

Effect of Vanadium Addition on Dynamic $\gamma \rightarrow \alpha$ Transformation During Hot
Deformation of Low Carbon Steels .. 259
 J-Y. Cho, D-W. Suh, J-H. Kang and H-C. Lee

Determination of Dynamic Ferrite Transformation During Deformation in
Austenite ... 267
 S.C. Hong, S.H. Lim, K.J. Lee and K.S. Lee

Grain Refinement of Medium Carbon Steel with Controlled Thermo-Mechanical Deformation ... 275
 J. Park, D.H. Song, D. Lee, W.Y. Choo,
 I. Park and K-M. Cho

Enhanced Formability of Superplastic AlMgZr Alloys Made by Particulate
Routes ... 281
 R. Cook, R. Grimes and R.J. Dashwood
On the Development of Microstructure in a Metal Matrix Composite Using Nano-Materials ...289
V.A. Popov, D.R. Lesuer, I.A. Kotov, V.V. Ivanov, A.A. Aksenov, I.I. Khodos, G.L. Klimenko, O.M. Smirnov, A.M. Murzakaev and S.V. Zayats

A New Severe Plastic Deformation Method: Twist Extrusion ...297
Y. Beygelzimer, D. Orlov and V. Varyukhin

III. Structure and Mechanical Properties

Defects, Microstructure and Dislocation Activity in Nanocrystalline Metals.................................307
R. Hugo, H. Kung and J.R. Weertman

Recent Developments of SPD Processing for Fabrication of Bulk Nanostructured Materials ...313
R.Z. Valiev

Deformation Mechanisms at Different Grain Sizes in a Cryogenically Ball-Milled Al-Mg Alloy ..323
X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou and E.J. Lavernia

Properties and Nanostructures of Materials Processed by SPD Techniques ...331
Y.T. Zhu and J. Huang

Tensile and Fatigue Properties of Al-Mg-Sc-Zr Alloy Fine-Grained by Equal-Channel Angular Pressing ..341
A. Washikita, K. Kitagawa, V.I. Kopylov and A. Vinogradov

Structure, Properties and Thermal Stability of Ultra-Fine Grained Cu-Cr-Zr Alloy ..351
A. Vinogradov, Y. Suzuki, V. Patlan, K. Kitagawa and V.I. Kopylov

Corrosion Fatigue of Ultra-Fine Grain Copper Fabrication by Severe Plastic Deformation ..361
T. Yamasaki, H. Miyamoto, T. Mimaki, A. Vinogradov and S. Hashimoto

Strength of Submicrocrystalline Severly Deformed Commercial Aluminum Alloys ...371
M.V. Markushev and M.Yu. Murashkin

Machinability Studies of PM Metal Matrix Composites on EDM ...381
P. Laxminarayana and V.S.R. Murti
Mechanical Properties of Ultrafine Grained Aluminum and Ultra Low Carbon Steel Produced by ARB Process ...389
N. Tsuji, Y. Ito, Y. Koizumi, Y. Minamino and Y. Saito

Mechanical Properties of Nano-Structured Plain Low-Carbon Steels Produced by Conventional Cold-Rolling and Annealing of Martensite Starting Microstructure ...399
R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi and Y. Saito

Dry Sliding Wear Behavior of Ultrafine Grained Commercial Purity Aluminum and Low Carbon Steel Produced by Severe Plastic Deformation Techniques ..409

Structural Evolution of Ultrafine-Grained Copper and Copper-Based Alloy During Plastic Deformation ...419
E.V. Kozlov, A.N. Zhdanov, L.N. Ignatenko, N.A. Popova, Yu.F. Ivanov and N.A. Koneva

Microstructure and Properties of 7475 Aluminum Alloy After Equal-Channel Angular Pressing ...429
J. Wang, C. Xu, Z. Zhang, X. Zhao, L. Wang and T.G. Langdon

The Microstructures and Compressive Deformation Behaviors of Nanocrystalline Al-5 at.% Ti Compacts Prepared by UHP-HP ..439
K.I. Moon and K.S. Lee

IV. Superplasticity and Thermal Stability

Grain Refinement of Copper Based Alloys Using ECAP ..449
Z. Horita, K. Neishi and T.G. Langdon

Developing Superplasticity at High Strain Rates Through ECAP Processing459
M. Furukawa, Z. Horita and T.G. Langdon

Grain Refinement and Superplasticity in Magnesium Alloys ..469
H. Watanabe, T. Mukai and K. Higashi

Effect of the Pressing Strain on the Annealing Behavior of Ultrafine Grained Ferrite in a Low Carbon Steel Fabricated by Equal Channel Angular Pressing479
K-T. Park and D.H. Shin

Significance of Microstructural Thermal Stability in an Al-2219 Processed by Severe Plastic Deformation ...485
B.Q. Han and T.G. Langdon
Modelling the Microstructural Evolution During Annealing of a Severely Deformed Al-3% Mg Alloy ..495
 J.S. Hayes, P.B. Prangnell and P. Bate

Role of Impurities and Second-Phase Particles ..505
 N.A. Koneva, A.N. Zhdanov, L.N. Ignatenko,
 N.A. Popova, E.E. Pekarskaya and E.V. Kozlov

Annealing Effect on the Strength of Severe-Plastic-Deformed Titanium515
 A.V. Sergueeva, R.Z. Valiev
 and A.K. Mukherjee

Structure and Mechanical Behavior of the AMg6 Aluminum Alloy After Severe Plastic Deformation and Annealing ...521
 M.V. Markushev and M.Yu. Murashkin

V. Theory and Modeling

Continuum Mechanics Approach in Severe Plastic Deformation533
 V.M. Segal

Deformation of Ti-6Al-4V Via Equal Channel Angular Extrusion539
 D.P. DeLo and S.L. Semiatin

Kinematics of Damage Governed by Severe Plastic Deformation547
 R.Ye. Lapovok and R.E. Cottam

Strength and Ductility of Ultrafine Grained Metallic Materials557
 Y. Estrin and H.S. Kim

Work Hardening Behavior of Aluminum Over a Wide Range of Strain567
 N.Q. Chinh, G. Vörös, Z. Horita
 and T.G. Langdon

Analysis of Principal and Equivalent Strains in Equal Channel Angular Deformation575
 K. Xia and J. Wang

Polycrystal Constitutive Modeling of ECAP: Texture and Microstructural Evolution585
 I.J. Beyerlein, R.A. Lebensohn
 and C.N. Tomé

Grain Size, Size-Distribution and Dislocation Structure from Diffraction Peak Profile Analysis ...595
 T. Ungár and J. Gubicza
Defect Characterization of Equal Channel Angular Pressed Cu by Selective Annealing Treatment ...605
 E. Schafler, A. Dubravina and Z. Kovacs

Size and Shape of Nano-Grains in Polycrystals Subjected to SPD615
 K.J. Kurzjdowski

X-Ray Analysis of SPD Nanostructured Materials ..623
 I.V. Alexandrov, A.R. Kilmametov,
 N.A. Enikeev, A.A. Dubravina and R.Z. Valiev

Addendum

Effect of Hot Working on Austenite/Ferrite Transformation in HSLA Steel..................635
 Y.H. Bae, S.H. Hong, D-H. Seo, J-K. Choi
 and W.Y. Choo

Equal Channel Angular Processing of Magnesium Alloys..643
 S.R. Agnew, G.M. Stoica, L.J. Chen,
 T.M. Lillo, J. Macheret and P.K. Liaw

Microstructural Evolution of Cryomilled Nanocrystalline Al-Ti-Cu Alloy653
 Z. Lee, R. Rodriguez, E.J. Lavernia
 and S.R. Nutt

Microstructure and Mechanical Properties of Non-Heat Treatable Aluminum Alloys Produced by Accumulative Roll Bonding Process661
 S.B. Kang, H.W. Kim, C.Y. Lim and Z.P. Xing

Features of Severe Plastic Deformation as Compared to Conventional Deformation Modes ...669
 M.J. Zehetbauer

Author Index ..679

Subject Index ...683
Two complementary approaches have been developed to synthesize ultrafine-grained (UFG) materials with grain sizes in the range from 10 to 1000 nm. The first is the “bottom-up” approach in which bulk ultrafine-grained materials are assembled from individual atoms or nanoscale building blocks such as nano-particles. Gleiter’s pioneering work on inert gas condensation (IGC) is a typical example of this approach. Various chemical and physical methods have been developed to synthesize nano-powders for small-scale laboratory investigations as well as for large-scale commercial use. Ceramic and metallic nano-powders can now be readily purchased from an increasing number of nano-technology companies. However, consolidation of these nano-particles into bulk nanostructured materials remains a major challenge.

The second approach for producing UFG materials is the “top-down” approach in which coarse-grained materials are refined into UFG materials. The most successful “top-down” approach has been via severe plastic deformation (SPD) techniques among which the most developed are equal channel angular pressing (ECAP) and high-pressure torsion (HPT). Recently, new SPD techniques have been developed such as accumulative roll-bonding (ARB), multipass-coin-forging (MCF), multi-axis deformation, and repetitive corrugation and straightening (RCS). The main advantage of SPD techniques is their capability for producing bulk UFG materials not only free of porosity but also in dimensions suitable for structural applications.

In the last decade, the processing of UFG materials via SPD techniques has received considerable attention from the materials science community. Many research groups have started to work in this exciting field and the annual number of publications has increased exponentially. The Second International Symposium on Ultrafine Grained Materials provides a forum to examine all aspects of the science and technology of UFG materials produced by SPD techniques. This proceedings book includes papers dealing with recent progress in processing and microstructures, microstructural evolution, mechanical and physical properties, superplasticity, computational and analytical modeling, new SPD technologies, etc.

The editors are grateful to all of the authors and presenters for making this symposium and this proceedings book a great success. Their responses to this symposium far surpassed the organizers’ expectations. The symposium incorporates ninety-three presenters from 15 countries so that this symposium is truly an international forum on UFG materials. Almost all of the papers presented at the symposium are included in these proceedings.
As suggested by the title of this symposium, ultrafine-grained materials will be a continuing theme in future TMS meetings. Future symposia will be held at regular TMS Spring meetings at approximately two-year intervals.

Finally, the editors thank the TMS staff, especially Mr. Stephen J. Kendall, for their considerable guidance and assistance during the preparations for this symposium and in the publication of this important proceedings book.

Yuntian T. Zhu
MS G755
Materials Science and Technology Division
Los Alamos National Laboratory
Los Alamos, NM 87545, USA
Email: yzhu@lanl.gov

Terence G. Langdon
Departments of Aerospace & Mechanical Engineering
and Materials Science
University of Southern California
Los Angeles, CA 90089, USA
Email: langdon@usc.edu

Rajiv S. Mishra
Department of Metallurgical Engineering
University of Missouri
Rolla, MO 65409, USA
Email: rsmishra@umr.edu

S. Lee Semiatin
Air Force Research Laboratory
Materials & Manufacturing Directorate
WPAFB, OH 45433, USA
Email: Lee.Semiatin@afrl.af.mil

Michael J. Saran
OES, Inc.
3715 Traynham Rd
Cleveland, OH 44122, USA
Email: saran@2oes.net

Terry C. Lowe
Metallicum LLC
1207 Callejon Arias
Santa Fe, NM 87501, USA
Email: tlowe@cybermesa.com
AUTHOR INDEX

A
Agnew, S.R., 643
Aksenov, A.A., 289
Alexandrov, I.V., 199, 623

B
Bae, Y.H., 635
Bate, P., 495
Beyerlein, I.J., 585
Beygelzimer, Y., 43, 193, 297
Bowen, J.R., 89

C
Chang, C.P., 35
Chang, S-Y., 25
Chen, L.J., 643
Chinh, N.Q., 567
Cho, J-Y., 259
Cho, K-M., 275
Choi, J-K., 635
Choo, W.Y., 275, 635
Cook, R., 281
Cottam, R.E., 547

D
Dashwood, R.J., 281
DeLo, D.P., 539
Dobatkin, S.V., 183
Dowding, R.J., 199
Dubravina, A., 605, 623
Dudova, N., 75

E
Efros, B., 43, 193
Efros, N.B., 193
Enikeev, N.A., 623
Estrin, Y., 557

F
Fecht, H-J., 47
Furukawa, M., 173, 459

G
Galeyev, R.M., 113, 123
Garay, J., 219
Gasch, M.J., 235
Grimes, R., 281
Grob, A., 47
Gubicza, J., 595

H
Han, B.Q., 485
Hansen, N., 3
Hartwig, K.T., 151
Hashimoto, S., 361
Hayes, J.S., 495
Hebert, R.J., 141
Hebesberger, T., 133
Higashi, K., 469
Him, Y-S., 99
Hong, S.C., 267
Hong, S.H., 635
Horita, Z., 15, 173, 449, 459, 567
Huang, J., 323, 331
Huang, X., 3
Huang, Y., 173
Hughes, D.A., 3
Hugo, R., 307

I
Ignatenko, L.N., 419, 505
Ito, Y., 389
Ivanisenko, Yu.V., 47
Ivanov, V.V., 289
Ivanov, Yu.F., 419

K
Kaibyshev, R., 65, 75, 81
Kang, J-H., 259
Kang, S.B., 661
Kao, P.W., 35
Karaman, I., 151
Kazyhanov, V.U., 199
Khodos, I.I., 289
Kilmametov, A.R., 623
Kim, H.S., 557
Kim, H.W., 661
Kim, I., 99
Kim, J., 99
Kim, S.-H., 55
Kim, W-J., 409
Kim, Y-S., 25, 409
Kitagawa, K., 341, 351
Klemm, R., 245
Klimenko, G.L., 289
Koizumi, Y., 389
Koneva, N.A., 419, 505
Kopylov, V.I., 341, 351
Kotov, I.A., 289
Kovacs, Z., 605
Kozlov, E.V., 419, 505
Krasilnikov, N.A., 245
Kung, H., 307
Kuntz, J., 219, 225
Kurzydlowski, K.J., 615

L
Langdon, T.G., 15, 163, 173, 429, 449, 459, 485, 567
Lapovok, R.Ye., 547
Lavernia, E.J., 323, 653
Laxminarayana, P., 381
Lebensohn, R.A., 585
Lee, D., 275
Lee, D.N., 55
Lee, H-C., 259
Lee, J.K., 55
Lee, K.J., 267
Lee, K.S., 267, 439
Lee, S., 173
Lee, T., 409
Lee, Z., 653
Lesuer, D.R., 289
Liao, X.Z., 323
Liaw, P.K., 643
Lillo, T.M., 643
Lim, C.Y., 661
Lim, S.H., 267
Liu, Z.G., 105
Lojkowski, W., 47

M
Macheret, J., 643
Maier, M.J., 151
Markushev, M.V., 371, 521
Mathaudhu, S.N., 151
McNelley, T.R., 15
Mimaki, T., 361
Minamoto, Y., 389, 399
Miyamoto, H., 361
Moon, K.I., 439
Motohashi, Y., 81
Mukai, T., 469
Mukherjee, A.K., 219, 225, 235, 515
Murashkin, M.Yu., 371, 521
Murti, V.S.R., 381
Murzakaev, A.M., 289
Murzinova, M.A., 113
Musin, F., 81

N
Neishi, K., 449
Nutt, S.R., 653

O
Olenyov, S., 65
Orlov, D., 43, 297

P
Park, I., 275
Park, J., 275
Park, J-J., 253
Park, K-T., 25, 409, 479
Patlan, V., 351
Patselov, A.M., 193
Pekarskaya, E.E., 505
Perepeko, J.H., 141
Pilyugin, V.P., 193
Pippan, P., 133
Popov, V.A., 289
Popova, N.A., 419, 505
Prangnell, P.B., 89, 495

R
Raab, G.I., 199, 245
Rodriguez, R., 653

S
Saito, Y., 389, 399
Salimgareyev, H., 43
Salishchev, G.A., 113, 123
Saytaeva, K., 81
Schafer, E., 605
Segal, V.M., 533
Semiatin, S.L., 539
Seo, D-H., 635
Sergueeva, A.V., 515
Shestakova, L.O., 199
Shin, D.H., 25, 99, 253, 409, 479
Siddikov, O., 65
Smirnov, O.M., 289
Song, D.H., 275
Stoica, G.M., 643
Stolyarov, V., 43, 209
Stüwe, H.P., 133
Suh, D-W., 259
Sun, P.L., 35
Suzuki, Y., 351
Swisher, D.L., 15

T
Thiele, E., 245
Tomé, C.N., 585
Tsuchiya, K., 105
Tsujii, N., 389, 399

U
Ueji, R., 399
Umemoto, M., 105
Ungár, T., 595

V
Valiakhmetov, O.R., 113
Valiev, R., 209
Valiev, R.Z., 47, 199, 313, 515, 623
Valitov, V., 75
Varyukhin, V., 43, 297
Vinogradov, A., 341, 351, 361
Vörös, G., 567

W
Wan, J., 219, 225, 235
Wang, J., 429, 575
Wang, L., 429
Washikita, A., 341
Watanabe, H., 469
Weertman, J.R., 307

X
Xia, K., 575
Xing, Z.P., 661
Xu, C., 163, 173, 429
Xu, Y., 105

Y
Yamasaki, T., 361

Z
Zayats, S.V., 289
Zehetbauer, M.J., 669
Zhan, G-D., 219, 225
Zhang, Z., 429
Zhao, X., 429
Zhdanov, A.N., 419, 505
Zherebtsov, S.V., 113, 123
Zhou, F., 323
Zhu, Y.T., 323, 332
γ/α Phase Transformation, 635

1100 Al, 409

A
Accumulative Roll Bonding (ARB), 3, 409, 661
Al-2219 Alloy, 485
Al-Mg-Mn-Cs Alloy (1570 Alloy), 65
Alumina, 225
Aluminum, 35, 281, 567
Aluminum 7475 Alloy, 429
Aluminum Alloy(s), 25, 55, 81, 183, 323, 459, 521, 661
Aluminum-Scandium Alloys, 341
Amorphization, 209
Amorphization Reaction, 141
Annealing, 399, 495
Asymmetric Rolling, 55
Atomisation, 281
Austenite Undercooling, 267

B
Ball-Milled Powders, 245
Ball Milling, 105
Bulk Billets, 245
Bulk Nanocrystalline Material, 653
Bulk Nanomaterials, 313

C
Carbide, 399
Carbon Steel, 47
Cementite Dissolution, 47
Cold-Rolling, 141, 399
Constrained Groove Pressing (CGP), 253
Constrained Groove Rolling (CGR), 253
Continuous Dynamic Recrystallization (CDRX), 65, 81
Copper, 133, 361, 419
Copper-Based Alloy, 351
Corrosion Fatigue, 361
Crack Resistance, 521
Critical Strain, 267
Cryogenic Ball Milling, 323
Cryomilling, 653
Crystallite-Size, 595
Cu, 557

D
Damage, 547
Defect Annealing, 605
Defects, 307
Deformation, 105, 193, 259, 419, 643
Deformation Induced Vacancies, 669
Deformation Mechanism, 15
Deformation Microstructure, 3
Die Angle, 35
Dislocation, 105
Dislocation Activity, 307
Dislocation-Density, 595
Ductile-Phase Toughening, 225
Ductility, 331, 389, 429, 557
Dynamic Compaction, 289
Dynamic Ferrite Transformation, 267
Dynamic Recrystallization, 123, 643
Dynamic Transformation, 259

E
Electrodischarge Machining, 381
Electron Back Scatter Diffraction (EBSD), 133
Equal Channel Angular Extrusion (ECAE), 35, 151, 539, 575, 643
Equivalent Strain, 575
Erosion Mechanism, 381

F
Fatigue, 341, 351, 361
Fe-Mn Alloys, 193
Finite Element Analysis (FEA), 253
Finite Element Simulations, 539
Flow Stress, 3
Four Processing Routes, 585

G
Grain Boundaries, 15, 361
Grain Growth, 389, 495
Grain Refinement, 55, 253, 429, 585
Grain Refinement Mechanisms, 89
Grain Size, 133
Grain Size and Shape, 615
Grain Size Refinement, 635
H
Hall-Petch Relationship, 389
Heavy Deformation, 267
High-Energy Ball Milling, 219, 225
High Pressure Torsion (HPT), 3, 47, 133
Homogeneity, 15, 163
Hot Working, 635
HSLA Steel, 635
Hydrostatic Pressure, 669

I
Image Analysis, 615
In-Situ Recrystallization, 389
Intense Plastic Straining, 75
Intense Straining, 389
Intensive Plastic Deformation, 245
Iron, 193

L
Large Strains, 133
Low Carbon Steel, 25, 409, 479
Low Energy Dislocation Structure (LEDS), 65, 75

M
Machinability, 381
Magnesium, 643
Magnesium Alloy, 469
Magnetic Properties, 209
Martensite, 399
Mechanical Alloying, 439
Mechanical Properties, 173, 209, 313, 399, 439, 515
Mechanics of Plastic Flow, 297
Medium Carbon Steel, 275
Metal Matrix Composite(s) (MMCs), 173, 289, 381
Metastability, 141
Metastable States, 209
Microhardness, 151, 163, 199, 661
Microstructural Evolution, 289
Microstructure(s), 151, 307, 323, 661
Microstructure Evolution, 75
Microtexture, 15
Misorientation Angle, 35
Modelling, 495
Multilayers, 141
Multi-Scale Structure, 653

N
Nano-Powders, 289
Nanocomposite(s), 219, 225, 235
Nanocrystal(s), 105, 141, 615
Nanocrystalline, 47, 151, 605
Nanocrystalline Alumina, 219
Nanocrystalline Metals, 307
Nanocrystalline Structure, 75, 113, 183
Nanostructured Material(s), 245, 439, 557, 623
Nanostructures, 331
Ni-20%Cr Alloy, 75
Non-Equilibrium Grain Boundary, 331
Non-Equilibrium Transformation, 275

P
Particulate, 281
Phase Transformations, 183, 193
Piezoelectric Toughening Phase, 219
Plain Low Carbon Steel, 399
Plastic Deformation, 605, 669
Plastic Instability, 389
Porosity, 547
Powder Metallurgy, 469
Pressure, 183
Principal Strain, 575
Pure Titanium, 515

R
Recovery, 399
Recrystallization, 151, 449
Refined Microstructure, 275
Rolling, 3

S
Self Consistent Schemes, 585
Severe Deformation, 89, 495
Severe Plastic Deformation (SPD), 43, 113, 183, 193, 209, 297, 313, 331, 341, 351, 361, 371, 469, 521, 547, 623
Shear, 533
Shear Bands, 533
Shear Texture, 55
SIDT Ferrite, 635
Silicon Carbonitride, 235
Silicon Nitride, 235
Size, 505
Size-Distribution, 595
Sliding Wear, 409
Slip-Geometry, 595
Spark-Plasma-Sintering (SPS), 219, 225
Spheroidization, 275
Stability, 505
Static Ferrite, 635
Steels, 183
Stereology, 615
Strength, 331, 389, 661
Stress History, 547
Stress-Strain Behavior, 567
Structural Evolution, 533
Structure, 193, 419
Subgrain, 505
Submicrocrystalline Structure, 81, 113, 123, 183, 371, 521
Submicron Grain Structures, 89
Submicrons Grains, 495
Superplastic, 281
Superplasticity, 449, 459, 469, 643

T
Tantalum, 151
Tempered Martensite, 399
Tensile Strength, 371, 521
Tensile Testing, 485
Texture, 585
Ti-6Al-4V, 539

Titanium, 25, 43, 123
Titanium Alloy, 113
Thermal Stability, 485
Thermo-Mechanical Deformation, 275
Thermohydrogen Treatment, 113
Torsion, 3
Toughness, 399
Transmission Electron Microscopy, 323
TTT Diagram, 635
Tungsten, 199
Twist Extrusion, 43, 297

U
Ultafine Grain(s), 25, 199, 399, 409, 419, 505
Ultrafine Grain(ed) Structure, 65, 267
Ultrafine Grained Materials, 43, 515, 557
Ultra-High Pressure Hot Pressing, 439

V
Vanadium Carbo-Nitride, 259

W
Warm Severe Plastic Deformation, 123
Work Hardening, 567

X
X-Ray Analysis, 623