TABLE OF CONTENTS

Session I

Linkage Between Safe-Life and Crack Growth Approaches for Fatigue Life Prediction ... 3
D.G. Harlow and R.P. Wei

A Mechanistic Based Study of Fatigue Crack Propagation in the Single Crystal Nickel Base Superalloy CMSX-2 ... 9
S.D. Antolovich and B.F. Antolovich

Thermographic Detection of Fatigue Damage in Hastelloy® C-2000® Superalloy .. 25
*T.A. Saleh, B. Yang, P.K. Liaw,
R.A. Buchanan and D.L. Klarstrom*

Elevated-Temperature Crack-Growth Behavior of Nickel-Base Hastelloy® X Alloy ... 33
*Y.L. Lu, L.J. Chen, P.K. Liaw, G.Y. Wang, M.L. Benson,
S.A. Thompson, J.W. Blust, P.F. Browning, A.K. Bhattacharya,
J.M. Aurrecoechea and D.L. Klarstrom*

Creep—Fatigue Life Prediction of Cr-Mo Steel Alloys ... 43
T. Goswami

Effect of Microstructure on the Very High Cycle Fatigue of Alloy at Room and Cryogenic Temperatures ... 51
C. Bathias and J. Bechet

Session II

Determining Worst-Case Fatigue Thresholds for Grain-Bridging Ceramics 61
J.J. Kruzic, R. Yuan, R.M. Cannon and R.O. Ritchie

Localized Deformation Around Indentations and the Effects of Hydrogen on Dislocation Cross-Slip .. 69
K.A. Nibur and D.F. Bahr

Rotating-Beam Fatigue Properties and Effect of Ni Element Additive in Bulk Glassy Zr₅₀Cu₄₀Al₁₀ Alloys ... 77
Y. Yokoyama, K. Fukaura and A. Inoue
A Mechanism for Fatigue Crack Initiation in Pure Metal ... 91
T. Zhai

Analysis of Plastic Deformation Behavior During Equal
Channel Angular Pressing .. 99
Y. Liu, Z. Tang, B. Huang and K. Zhou

Evaluating the Induced Strain During Equal Channel Angular Processing 119
G.M. Stoica and P.K. Liaw

Session III

On the Development of Life Prediction Methodologies
for the Failure of Human Teeth.. 137

Predicting Material Consumption by Cyclic Oxidation Spalling Models............... 147
J.L. Smialek

Corrosion Damage Functions .. 155
R.H. Jones

Prediction of High Temperature Cyclic Oxidation Kinetics with
a Simple Statistical Spalling Model... 165
D. Poquillon and D. Monceau

Influence of Environment on Creep Properties of MC$_2$ Single
Crystal Superalloy at 1050°C and 1150°C... 173
S. Dryepondt, E. Andrieu, D. Monceau, F. Crabos and C. Vernault

Influence of Environment on Mechanical Behavior of Alloy 718 at 650°C........... 181
V. Garat, B. Viguier, J.M. Cloué and E. Andrieu
Session IV

Life Prediction Strategies for Land-Based Gas Turbine Blades .. 191
K.S. Chan, N.S. Cheruvu, G.R. Leverant, and R. Viswanathan

Fatigue Fracture Mechanism and Fatigue Life Assessment of Aluminum Castings .. 211
Q.G. Wang

Fatigue and Fretting Fatigue of Biomaterial, Ti-29Nb-13Ta-4.6Zr, in Air and Simulated Body Environment .. 223
M. Niinomi, T. Akahori and K. Ishimizu

Effect of Alpha Grain size on Low-Temperature Fatigue Properties of Ti-5%Al-2.5%Sn Eli Alloy .. 231
Y. Ono, T. Yuri, H. Sumiyoshi, S. Matsuoka and T. Ogata

Addendum

The Behavior of Hastelloy® C-2000® Alloy Under Strain-Controlled Fatigue Loading .. 241
R.L. McDaniels, L. Chen, R. Steward, P.K. Liaw, R.A. Buchanan and D.L. Klarstrom

Subject Index .. 255

Author Index .. 259
This book is a collection of papers presented at a symposium on "Materials Lifetime Science and Engineering" sponsored by the Mechanical Behavior of Materials Committee of The Minerals, Metals & Materials Society (TMS) and ASM International. The symposium took place at the 2003 TMS Annual Meeting, San Diego, California, March 2 – March 6. The objective of the symposium was to provide fundamental understanding and theoretical modeling of materials lifetime science and engineering of metals and alloys including advanced materials. Advanced materials include biomaterials, bulk metallic glasses, intermetallics, composites, superalloys, etc.

The most complex and often most damaging processes that control the lifetimes of structural materials are those that involve synergistic interactions between environmental and mechanical effects. Mechanistic understanding and modeling are needed to further develop materials lifetime science and engineering, and formulate predictive methodologies. Emphases are placed on mechanical/environmental interactions, damage evolution, and final failure. Some of the areas explored are as follows:

1. Lifetime Studies of Conventional Materials in Aqueous Environments
2. Lifetime Studies of Advanced Materials in Aqueous Environments
3. Lifetime Studies of Advanced Materials in High-Temperature Gaseous Environments
4. Lifetime Studies of Oxide Scales in High-Temperature Gaseous Environments.

The symposium attracted scientists and engineers from universities, industries, and government agencies worldwide. We were very much encouraged by the turnout of the participants with strong interest in the research and application of materials lifetime science and engineering. The symposium was highlighted by thoughtful discussions and technical interchanges among the participants.

We would like to thank all of the participants for the success of the symposium, and the authors for their excellent contributions to the book. We are confident that this book will provide invaluable reference information for the research on "Materials Lifetime Science and Engineering."

It is our belief that it is only through vigorous research on and understanding of "Materials Lifetime Science and Engineering," the engineering applications of materials can then become a common practice.

The symposium organizers were Peter K. Liaw and Raymond A. Buchanan of the University of Tennessee, Dwaine L. Klarstrom of Haynes International, Inc., Robert P. Wei and D. Gary Harlow of Lehigh University, and Peter F. Tortorelli of Oak Ridge National Laboratory.
The organizers would like to thank the National Science Foundation for the financial support of the Integrative Graduate Education and Research Training (IGERT) Program on “Materials Lifetime Science and Engineering (DGE-9987548)” with Drs. W. Jennings and L. Goldberg as program monitors.

Dr. P. K. Liaw Dr. R. A. Buchanan Dr. D. L. Klarstrom
The University of Tennessee The University of Tennessee Haynes International, Inc.
Knoxville, TN 37996-2200 Knoxville, TN 37996-2200 P. O. Box 9013
Tel: (865) 974-6356 Tel: (865) 974-4858 Tel: (765) 456-6925
Fax: (865) 974-4115 Fax: (865) 974-4115 Fax: (765) 456-6218
E-mail: pliaw@utk.edu E-mail: rab1@utk.edu Email:dklarstrom@haynesintl.com

Dr. R. P. Wei Dr. D. G. Harlow Dr. P. F. Tortorelli
Lehigh University Lehigh University Oak Ridge National Lab.
Mechanical Engineering Mechanical Engineering Corrosion Group
& Mechanics, 7 Asa Drive & Mechanics, 19 Memorial 1 Bethel Valley Road
Bethlehem, PA 18015 Dr. West, Bethlehem, PA 18015 Oak Ridge, Tennessee 37831
Tel: (610) 758-3587 Tel: (610) 758-4127 Tel: (865) 574-5119
Fax: (610) 758-6555 Fax: (610) 758-6224 Fax: (865) 574-5119
E-mail: rpw0@lehigh.edu E-mail: dgh0@lehigh.edu E-mail: pft@ornl.gov
SUBJECT INDEX

A
\(\alpha \)-Alumina, 165
Aerospace, 211
Air, 9
Al Depletion, 191
Alloy 718, 181, 182, 185-188
Alumina, 61
Aluminum Alloy, 3
Aluminum Casting, 211
Automotive, 211

B
Bond Coat, 191
Bulk Metallic Glasses, 77
Burgess Vector, 91

C
Ceramics, 61
Coating Life Diagram, 191
Coating Life, 191
Coatings, 147
COATLIFE, 191
CoCrAlY, 191
Corrosion Fatigue, 155
COSIM, 191
Crack Growth (Propagation), 155
Crack Growth, 137
Crack Growth, 3
Crack Size, 61
Crack, 155
Cracking, 155
Creep, 181-184, 186-188
Creep, 43
Cr-Mo Steel Alloys, 43
Cross-Slip, 69
Cryogenic Temperature, 51
Cu, 91
Cu-Si, 91
Cyclic Loading, 137
Cyclic Oxidation, 147, 165, 191

D
Damage, 137
Dentin, 223, 225-229
Diffusion Coating, 191
Dislocation, 69
Dislocations, 91
Duplex Coating, 191

E
ECAP, 119
Elevated Temperature, 33
Equal Channel Angular Processing, 119

F
Fatigue Crack Growth (Propagation) Behavior, 33
Fatigue Crack Growth (Propagation), 61
Fatigue Crack Initiation (Propagation), 211
Fatigue Crack Initiation, 91
Fatigue Crack Propagation, 9
Fatigue Fracture, 211
Fatigue Life, 3, 25, 137, 211
Fatigue Property
 Alpha-Type Titanium Alloy, 231
 Grain Size, 231
 Cryogenic Temperatures, 231
 Sub-Surface Crack Initiation, 231
Fatigue Threshold, 61
Fatigue, 25, 33, 43, 77, 137
Fatigue
 S/N/ Behavior, 223, 225-226
 Crack Growth, 224, 225-228
 Threshold, 227
 Life Prediction, 228-229
Finite Element, 9
Fractography, 227
Fracture Toughness, 224, 228
Fracture, 77
G
- γ' Precipitate, 9
- Grain-Bridging, 61
- GT29+, 191
- GT33+, 191

H
- Hastelloy C-2000, 25
- Hastelloy X, 33
- Held Time, 33
- High Temperature, 33, 165
- High-Cycle Fatigue, 51
- Hot Section Component, 191
- Hydrogen, 69, 155

I
- In Vitro, 37
- Indentation, 69
- Infrared Camera, 25
- Inter-Diffusion Zone, 191
- Interfacial Spallation, 147
- Irreversible, 91

L
- Land-Based Gas Turbines, 191
- Life-Prediction Methodology, 191
- Lifetime, 155
- Linear Summation Model, 33
- Long Crack, 155

M
- MCrAlY, 191
- Mechanics, 137
- Mechanisms, 91
- Mechanisms
 - Dislocation Motion, 173, 180
 - Interface Migration, 178
 - Diffusion Process, 173, 177, 180
- Microstructure, 51
- Model, 91
- Modeling, 147
- Multi-Pass, 119
- Multiple Passes, 119

N
- Ni Drel, 77
- Ni-200, 69
- Nickel-Base, 33
- NiCoCrAlY, 191
- Nondestructive Evaluation (NDE), 25
- Nucleation Surface, 91

O
- One Pass, 119
- Overlay Coatings, 191
- Oxidation, 181, 185-188
- Oxidation
 - Argon Hydrogenated, 173-180
 - Oxide Scale, 173, 177-180
 - Diffusion Barrier, 178, 180

P
- Performance Map, 165
- Pitting, 155
- Plastic-Deformation Zone, 119
- Plasticity Modeling, 119
- Power Industry, 43
- Prediction, 165
- Probabilistic, 3
- PtAl Coatings, 191

R
- R Ratio, 25
- R-Curve, 61
- Reliability, 211
- Remaining Life, 191
- Rotating-Beam Fatigue, 77

S
- 77K, 51
- SCC, 155
- Shear Plane, 119
- Shear Strain, 119
- Shear Stress, 91
- Single Crystal Nickel-Base, 9
- Single Crystal Superalloy
 - MC2 Alloy, 173
 - Thin Specimen, 173
Si, 91
Slip, 91
Slip-Line Field, 119
S-N Curve, 3, 51
Spallation, 191
Statistical Spalling Model, 165
Strain Rate, 119
Strain, 119
Stress Intensity Factor, 33
Stress Intensity, 137
Striation-Like Fracture Surface, 77
Superalloy, 25, 33, 147
Superalloy Vacuum, 9

T
10^{10} Cycle, 51
20 kHz, 51
300K, 51
316 Stainless Steel, 69
TBCLIFE, 191
Teeth, 137
Temperature Evolution, 25
Temperature Oscillation, 25
Tests
 Creep Curve, 174-178
 Temperature Steps, 174, 176
 Atmosphere Switch, 174, 175, 178

Theoretical Modeling, 33
Thermal Barrier Coatings, 191
Thermally Grown Oxide (TGO), 191
Thermographic Detection, 25
Thermography, 25
Thermomechanical Fatigue, 191
Ti-30Mo, 69
TiAl4V, 51
Toughness, 61
Transmission electron Microscopy, 9

V
Viscosity Method, 43

W
Wave Glide, 69
Wing Cracks, 191

Z
ZrCuNiSi, 77
ZrCuSl, 77
AUTHOR INDEX

A	Akahori, T., 223
	Andrieu, E., 173, 181
	Antolovich, B.F., 9
	Antolovich, S.D., 9
	Aurrecoechea, J.M., 33
B	Bahr, D.F., 69
	Bathias, C., 51
	Bechet, J., 51
	Benson, M.L., 33
	Bhattacharya, A.K., 33
	Blust, J.W., 33
	Browning, P.F., 33
	Buchanan, R.A., 25, 241
C	Cannon, R.M., 61
	Chan, K.S., 191
	Chen, L.J., 33, 241
	Cheruvu, N.S., 191
	Cloué, J.M., 181
	Crabs, F., 173
D	Dryepondt, S., 173
F	Fukaura, K., 77
G	Garat, V., 181
	Goswami, T., 43
H	Harlow, D.G., 3
	Huang, B., 99
I	Imbeni, V., 137
	Inoue, A., 77
	Ishimizu, K., 223
J	Jones, R.H., 155
K	Kinney, J.H., 137
	Klarstrom, D.L., 25, 33, 241
	Kruzic, J.J., 61
L	Leverant, G.R., 191
	Liaw, P.K., 25, 33, 119, 241
	Liu, Y., 99
	Lu, Y.L., 33
M	Marshall, S.J., 137
	Matsuoka, S., 231
	McDaniels, R.L., 241
	Monceau, D., 165, 173
N	Nalla, R.K., 137
	Nibur, K.A., 69
	Niinomi, M., 223
O	Ogata, T., 231
	Ono, Y., 231
P	Poquillon, D., 165
R	Ritchie, R.O., 61, 137
S	Saleh, T.A., 25
	Smialek, J.L., 147
	Steward, R., 241
	Stoica, G.M., 119
	Sumiyoshi, H., 231
T	Tang, Z., 99
	Thompson, S.A., 33
V	Vernault, C., 173
	Viguier, B., 181
	Viswanathan, R., 191
W	Wang, G.Y., 33
	Wang, Q.G., 211
	Wei, R.P., 3
Y	Yang, B., 25
	Yokoyama, Y., 77
	Yuan, R., 61
	Yuri, T., 231
Z	Zhai, T., 91
	Zhou, K., 99