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Abstract 

The current financial climate is driving a move towards increased 
use of computer modelling techniques in alloy design and 
development in order to reduce cost. In this paper the potential for 
use of neural computing methods in the prediction of fatigue 
resistance in Ni-base superalloys is assessed. Initial work has been 
conducted on the Stage II (Paris regime) behaviour, as the literature 
indicates that this is the simplest region of the fatigue crack growth 
curve to predict, with an approximately linear relationship existing 
between log(da/dN and log(AK), and the crack growth rates being 
principally affected by temperature, Young’s modulus and yield 
strength. These three parameters were chosen for initial data 
collection and modelling. The predictions made are of fatigue life, 
calculated from the slope and intercept values of the linear portion of 
the log-log fatigue crack growth curve. A test dataset has been 
successfully predicted along with the trends in the data. The effect 
of adding ultimate tensile strength and electron valencies as inputs to 
the model is assessed. It is shown that validation of models 
produced against metallurgical experience, and careful construction 
of the database are important conditions for effective use of neural 
network models for fatigue life predictions. 

In recent years there has been an increased interest in the ability to 
model the mechanical properties of alloys from compositional and 
processing data in order to reduce the cost and time required for 
alloy development. Increased expectations of engine performance, 
in terms of speed and range, have led to the need for higher 
performance alloys, while the financial climate has forced a 
reduction in the cost of new products. 

Good fatigue crack growth resistance is an essential property for 
superalloys operating in the high temperature stage of gas turbine 
engines; hence over the last thirty years many studies on the fatigue 
crack growth behaviour of Ni-base superalloys have been 
conducted. The general trends in fatigue crack growth behaviour 
with variations in test conditions (load ratio, temperature and 
environment), microstructure and processing route are well 
established. In general such alloys exhibit two stages of long crack 
fatigue behaviour: Stage I facetted crack growth. occurring along 
crystallographic ( 111 r planes corresponhing to persist&t sli: 
bands; and more homogeneous Stage II crack growth resulting in 
essentially flat fracture &faces [l]. -Inspection mtervals for turbine 
comuonents are often determined on the basis of Stage II fatigue 
crack growth rates, assuming an initial crack length Equal to The 
smallest detectable flaw size. Such flaws might be surface 
scratches, coating cracks or casting defects such ai pores. In this 
paper Stage II crack growth is concentrated on as the regime of 
most interest with respect to lifing procedures. 
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The fatigue process is sufficiently complicated that, in spite of all 
the work which has been undertaken in this area, a comprehensive 
fundamental behavioural model is lacking. Hence a reliable 
empirical method for predicting fatigue life, using existing data, 
remains a desirable goal. 

The complexity of the fatigue process and the noise associated with 
fatigue test results has meant that even traditional empirical 
methods, such as regression analysis, have failed to produce a 
sufficiently comprehensive, robust model which accurately predicts 
trends in the data and yet does not model the noise. 

Artificial neural networks are powerful computing devices designed 
to mimic the structure and learning capabilities of the brain, 
consisting of a large number of simple computational elements (or 
nodes) which are extensively interlinked via weighted connections. 
Such networks have the ability to learn rather than being 
programmed, can pick out complex patterns or trends in data, and 
can deal with noisy or irrelevant data points in an input dataset. In 
this paper the possibilities for using such a neural network as a tool 
to model fatigue using existing fatigue crack growth data are 
evaluated. 

Neural Networks 

Artificial neural networks are computational tools based on the 
structure and function of the brain [Z]. They are composed of 
simple computational elements (called neurons or nodes) which 
imitate the most basic function of a biological neuron. These 
artificial neurons are then connected to others by a series of 
connections broadly analogous to, although much simpler than, 
those in the brain. The nodes are arranged in layers, with each node 
being connected to every node in the adjacent layers (figure 1). The 
simplest node sums N weighted inputs, performs a non-linear 
function on the sum, and then passes the result to the nodes in the 
next layer [3]. Data flow forwards only through the network. 

There are two phases in the development of a neural network model 
[4]. Initially the network is ‘taught’ using a number of example 
datasets - this process is referred to as training. The training 
datasets consist of a series of inputs paired with the corresponding 
output (the ‘target’ output). An input dataset is applied, the network 
calculates an output and compares it with the target. The error 
between output and target is calculated, and the weights in the 
network are then adjusted using an algorithm (in the case of the 
network used in this work, a ‘back propagation’ algorithm) in order 
to improve the output. The data are fed through repeatedly until the 
network output is deemed sufficiently accurate (the solution has 
‘converged). After this training the network is tested on a set of 
previously unseen data. 
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Figure 1 - Schematic diagram of a neural network 

It is possible to vary the number of nodes in the hidden layer of the 
network (the ‘architecture’), and care must be taken when deciding 
the network architecture, as it is possible to overmodel or 
undermodel the data. If too complex a network is chosen, then the 
training data will appear to be excellently modelled, however the 
network will be modelling the noise in the data as well as the trends, 
so that when the model is-tested it will not be robust enough to cope 
with the new data presented to it. On the other hand, if too simple a 
network is chosen it will fail to model the trends in enough detail, 
and predictions will again be very inaccurate. Examples of this type 
of behaviour are shown in figure 2. In this work, therefore, the 
network is trained over a number of different architectures and the 
results are compared. 
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. 
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a) undermodelling - too few 
nodes in hidden layer 
b) good model -trends 
picked out 
c) overmodelling - too 
many nodes in hidden layer 

Figure 2 - the effect of number of nodes on modelling accuracy 

A point to note is that a neural network learns from experience, and 
hence while it may interpolate between data with some confidence. 
it cannot accurately extrapolate into regions for which it has no 
information, and any attempts at such predictions should be treated 
with extreme caution. 

The main advantage of neural networks over conventional 
regression analysis techniques is that the network finds an optimum 
solution without the need to specify the relationships or the form of 

relationships between variables. The ability of networks to 
generalise and find patterns in large quantities of often noisy data is 
also a major advantage. However the number of sets of training 
data requjred to establish a robust network is dependent on the 
number of inuut variables (the ‘dimensionalitv’ of the data). 
Previous studies have suggested that the size of ihe training data 
should be between three and ten times the input dimensionaIity[5]. 

Neural networks in materials science 

It has been demonstrated in the literature that neural networks may 
be used with some success to model material properties and material 
behaviour [6, 7, 8, 91. While it is acknowledged that material 
behaviour is best understood by carrying out experimental 
urogrammes, it is not always uossible to describe the behaviour in 
ierr& of a simple mathematical expression, and hence quantitative 
modelling of behaviour is difficult, and will become more so as 
modem materials are further developed with increasingly complex 
behaviour. 

Feedforward neural networks can be very useful in picking out 
patterns of behaviour and property relationships from a quantity of 
experimentally produced data, and their ability to generalise can 
make them useful in predicting the behaviour of a potential new 
material before it is made. Work on the strength properties of Ni- 
base superalloys [6] has shown that trends in behaviour with 
varying composition, temperature and material condition can be 
modelled, and within error limits absolute values of strength may be 
estimated. 

This paper describes work carried out on the modelling of the 
Stage II fatigue properties of such alloys using a supervised 
feedforward neural network as described above. 

The datasets 

A number of input variables have been considered for presentation 
to the network. These are: temperature, yield stress, Young’s 
modulus, ultimate tensile strength and NV number. 

Sixtv-four sets of inuut data were gathered from a Rolls-Rovce 
database [27], for wb&h fatigue testsare conducted at a frequency 
of 0.25 Hz using a l-l-l-l trapezoidal wave form. The network 
trained using 34 sets and tested itself on the remaining thirty sets. 

Before presentation to the network the data for each input variable 
was normalised between -0.5 and +0.5, according to the equation: 

where ni is the normalised value of datapoint i and xi, xmM and Xmin 
are the actual values of datapoint i, and the maximum and minimum 
valued datapoints. This is to prevent a variable from swamping the 
network simply by virtue of having a large absolute value rather than 
as a result of the effect of its variation on the result. 

Each set of input data is presented to the network along with a 
corresponding expected output. In this case the chosen output was a 
‘life’ calculated from crack-C and crack-n values where crack-n is 
the slope of the log dafdN vs. log AK fatigue curve in the Stage II 
region and crack-C is the intercept of this line on the da/dN axis<see 
figure 3). All fatigue data were uroduced at a load ratio R=O. 1. and 
I&es were calculated using a prediction program for a semi-elliptical 
crack [IO]. These ‘life’ values were also normahsed. 
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Figure 3 - Schematic to show crack-C and crack-n 

When choosing a dataset to train the network on it is important to 
try and ensure that the data are spread evenly over the areas of input 
space which are of interest. Otherwise the network may be 
attempting to extrapolate from well defined regions of input space 
into regions about which nothing is known, and predictions may be 
unreliable. The range of values of input and output data is shown in 
figure 4. 

Training and testing the network 

The network used is based on a Bayesian statistical framework, 
which allows the probability of a model being a true representation 
of the data to be assessed[ll]. Initial weights are set using a 

random number generator which is started using a ‘seed’. This 
seed can have any positive value, and using different seeds may 
produce slightly different models. In order to ensure that all 
potential model types are generated the network is trained using a 
number of seed values for each architecture. 

The network finds the optimum solution by minimising a penalised 
likelihood, in effect trying out a number of solutions to find the best 
relationship. As well as calculating the weights for the connections 
the network calculates a number of other parameters: 

c nu - a measure of the noise allowed in the networks prediction 
of the data. Initially this is set at a fairly large value, and the 
program modifies the inferred noise level as it develops the 
model to more accurately fit the data. The value of this parameter 
varies with the number of nodes, generally decreasing to a limit 
as the number of nodes increases and a more complex model is 
formed such that the relationship between inputs and outputs is 
better modelled. The value of crnu is a fraction of the range of the 
output data, e.g. q,“- -0.2 means that the inferred noise in the 
data is 20% of the range of the target output dataset. 

training energy - a measure of the error in predicting the training 
dataset targets (this usually follows a similar pattern to qiu). 

test energy - a measure of the error in predicting the previously 
unseen test dataset. This initially decreases with increasing 
number of nodes to a point, but if overmodelling starts to occur, 
and the network has effectively ‘learnt’ the training dataset, then 
it will be unable to cope with noise in the test set and test energy 
will start to increase. 
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Figure 4 - graphs to show the range of the input and output data 
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relevance - this is a value which is produced for each input to the 
network, and is a measure of how important that input is in the 
model produced. A highly important input would have a 
relevance of the order of 1, whereas an input which is perceived 
to be irrelevant would be assigned a relevance of the order of 
10e3 or less. 

Energy values are calculated from the following equation: 

energy=ix(o-t)’ (2) 
L 

where o is the output value and t is the target value. 

In order to be useful as a cost-saving design tool, the number of 
inputs to the network should ideally be kept to the minimum 
possible. For this reason it was decided to ‘start small’ and present 
the network with few variables, gradually adding other possibly 
important variables to see whether they had a positive or detrimental 
effect on the predictive ability of the nktwork.~Another advantage of 
this approach is that it keeps the input dimensionality low, thus 
requiring less data to produce a robust model. 
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The basic database 

A review of literature on Stage II Paris regime fatigue crack growth 
and crack tip opening displacement (CTOD) models for crack 
growth indicates that the most important properties affecting fatigue 
crack growth are likely to be yield strength and Young’s modulus 
[12, 13, 14, 15, 16, 17, 18, 191. CTOD theory suggests the 
following form of equation for fatigue crack growth rate: 

da AK2 
dlv Oc crsE 

where da/dN is the crack growth rate, AK is the stress intensity 
factor range, ors is the yield stress and E is the Young’s modulus 
[17, 181. The literature also suggests that test temperature is an 
important factor affecting fatigue crack growth rates [20, 211. 
Hence initial modelling used an input dataset consisting of 
temperature, o,, and E. 

The network was trained for 2-8 hidden nodes. For each number of 
nodes seeds of 0,20,40, 60 and 99 were used. 

A plot of uriU vs. number of nodes is shown in figure Sa. Two 
different types of model are generated by the network, depending 
on the initial random weights (determined by the ‘seed’). The first 
type tend to have relatively high onu values (0.18, or 18% of the 
range of the output data), this value being independent of the 
number of nodes. This indicates that an over-simple model is being 
produced which is just as accurately described with two nodes as 
with five or seven: Training and lest energies for these models 
followed a similar pattern and were also high, with values of about 
0.5 in both cases. This type of model will be referred to as the 
simple model. 

Figure 5a) - Graph of noise vs. no. of nodes for the simple dataset 
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Figure 5b) - Graph of network output vs. target output for a type-B 
model 

The second set of models on the other hand display a decreasing 
noise level, reaching a minimum of about 0.034 at four hidden 
nodes, indicating the formation of a more complex model. Training 
and test energies again followed a similar pattern, with values of 
training energy around 0.015 and test energy around 0.03. When 
the relevance values of the input variables for the two different types 
of model were compared it was found that the simple models all had 
very low relevance for Young’s modulus (e.g. 1*10-4,.c.f. 0.6 for 
yield stress) whereas the more complex models attributed a much 
higher relevance to Young’s modulus (e.g.1.4, c.f. 2.2 for yield 
stress), more in accordance with CTOD theon, and experimental 
evidence. A graph of predicted output vs. iarget output for a 
comulex model is shown in figure 5b. It can be seen that 
predictions are good, with most oflthe predictions lying very close 
to the line for output = target. 
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Figure 6 - Predictions of life generated using the simple database for 
(a) varying temperature and (b) varying yield stress 

It is important to test the physical validity of a neural network 
model, to ensure that the network really has converged, and has not 
found a local minimum in the data. Thought experiments were 
conducted using a model dataset in which the input variables took 
on the median value of the original dataset (T=600 “C, 0ys=950 
MPa, E=195 GPa) and then each variable in turn was varied in 
order to see what trends the neural network had found. The best six 
complex models, ranked on test error, were chosen and the best 
simple model was used for comparison. The prediction of life with 
variation in temperature is shown in figure 6a. The prediction 
follows the expected trend of decreasing life with increasing 
temperature [21], with the effect becoming more marked as 
temperature increases. This can be understood both in terms of the 
decrease in yield stress (typically about 10% for a given alloy over 
this temperature range) and also the likely change in deformation 
mechanism. At higher temperatures a transition from planar to 
wavy slip is expected, with increased cross slip occurring and slip 
becoming inherently less reversible, resulting in more damage 
accumulation per cycle. The simple model produces a much simpler 
linear trend, indicative of undermodelling. The prediction of life 
variation with Young’s modulus for the complex models shows a 
roughly linear increase in life with increasing Young’s modulus, in 
accordance with what might be expected from CTOD theory and 
from experiment [22], while the simple models show life to be 
independent of E, as would be expected from the low relevance 
assigned to it. 

When predictions of varying yield stress are examined, however, an 
unexpected result is obtained, as life is predicted to decrease rapidly 
as yield stress increases from 700-800 MPa, followed by a slight 
increase to 1000 MPa and then a further gentle decrease in life 
(figure 6b). CTOD theory on the other hand would indicate an 
increase in life with increasing yield stress in a similar manner to 
that seen in the Young’s modulus predictions. There are two 
possible reasons for this apparent anomaly. It is possible that it 
may be explained by the fact that these predictions were made for a 
temperature of 600 “C, and the data contain only two alloys with a 
yield stress less than 800 MPa at this temperature, both of which 
have a Young’s modulus of about 170 GPa, rather than the 
195 GPa used for prediction. Hence attempting to predict life in 
the data range used may effectively be an extrapolation into an 
unknown area. While such extrapolations may not necessarily be 
totally misleading, this example illustrates that care is needed if 
attempting them. It also indicates the importance of constructing, 
where possible, a database which would cover the possible range of 
data of interest if neural network modelling is to be used as a design 
tool. That is not to say however that a neural network could not be 
used to reduce experimentation - if an unexpected result is found, 
then one or two experiments in the area of interest may suffice to 
test the proposed model, without an entire test matrix being 
required. The results could then be added to the training dataset. 

Another possible explanation is revealed by further examination of 
the input data. If the data for life are plotted versus yield stress for 
temperatures between 550 “C and 650 “C (figure 7) it can be seen 
that there is in fact a reduction in life with increasing yield stress at 
low yield stress ranges. The points which cause this are all points 
for one particular alloy in the database which is a casting alloy, as 
opposed to a wrought alloy, and hence has a very different 
microstructure compared to the other alloys in the database. 
Examination of the actual test data revealed that the tests had been 
conducted on specimens containing only two grains, and the cracks 
had deflected at high angles from the normal to the principal stress, 
giving low apparent crack growth rates. The existence of only two 
grains in the specimens and the high deflection angle of the cracks 
indicate that the cracks may have propagated in Stage I, where 
CTOD models do not apply, as slip is inhomogeneous, being 
concentrated in intense bands. The low crack growth rates may 
have occurred as a result of crack closure [21] and/or shielding due 
to crack deflection [26], both of which reduce the effective stress 
intensity at the crack tip. This result indicates the importance of 
careful construction of the database to cover the problem of interest, 
without including spurious data. 
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Figure 7 - Life versus yield stress for all data in the temperature 
range 550-650 “C. 
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Refining the data base 

The model produced so far has been somewhat simplistic, with only 
three input variables used, and while some success has been 
obtained it was thought useful to add further parameters to see 
whether network performance improved. However, collecting data 
can be problematic as in order to use a given dataset it is necessary 
to have values for all the inputs. It would have been informative to 
look at grain size and other microstructural parameters, as Stage II 
fatigue is expected to be microstructurally sensitive to some extent 
[20]. Unfortunately, microstructural information is difficult to 
obtain-from reports, papers and standards to a sufficient degree of 
accuracy to be useful in the network. Hence material property data 
and such data as are calculable from thermodynamic phase 
calculation programs such as MTDATA are used as inputs, as these 
am more readily available/determinable. 

Accountine for cvclic hardening. 

In equation 3, the yield stress in the denominator is that at the crack 
tip. This may or may not be similar to the bulk yield stress, as 
repeated yielding of material in tension and compression may cause 
cyclic hardening or softening. Hence the cyclic yield stress may 
differ from the bulk yield stress. Data for cyclic yield stress are not 
readily available. However Manson and Hirschberg [23] proposed 

an empirical relationship between ‘hardenability’ and the ratio of 
ultimate tensile strength (UTS) to yield stress. Materials with a ratio 
greater than 1.4 are proposed to cyclically harden, those with a ratio 
less than 1.2 to cyclically soften, and those with a ratio between 1.2 
and 1.4 to be cyclically stable. Therefore UTS was added to the 
database as an input to the network to provide a measure of 
deformation characteristics. 

The addition of UTS as an input produced three types of low noise 
models, which had comparable noise levels and training and test 
energies to those produced previously. In this instance a number of 
the models (about half) assigned a low relevance to E. Of those that 
did not, again the best six models were chosen, ranked by test 
error, and were then compared with a model with low relevance for 
E. When predictions of variation in life with yield stress are made 
(using a mean UTS value of 1360 MPa), it may be seen that the 
models fall broadly into two groups, those that predict a large drop 
in life with yield stress increasing from 700-800 MPa (type-i) and a 
group which indicates a more linear dependence of life on yield 
stress (type-ii) (figure8a). Above 800 MPa the two sets of models 
agree reasonably well. While the type-ii models at first seem 
promising, examination of predictions for temperature and Young’s 
modulus calculation cast doubt on their validity (figure Sb &c). The 
prediction of temperature dependence shows a different form from 
previous models, and indicates a lessening of the effect of 
temperature as temperature increases, whereas observations on 
increased dislocation mobility with temperature would indicate an 
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increasing effect of temperature as demonstrated by type-i. 
Dependence of life on Young’s modulus for type-ii models is the 
reverse of that predicted by CTOD theory and experimental 
observation. 

The dependence of life on UTS is shown in figure 8d. The type-i 
models uredict an evident but modest deuendence of life on UTS. 
indicating some importance of UTS,&although it seems less 
important than temperature and E. The type-ii models however 
indicate a strong dependence of life on UTS below about 1250 
MPa, above which value the two types of model agree reasonably 
well. When the values of predicted life are examined it is noted that 
below 1250 MPa the values fall well outside the range of the dataset 
(-0.75 as opposed to a limit on the data of -0.5). Again it is 
possible that the model is trying to extrapolate too far from the 
known database, and so such predictions should be regarded with 
care, as in the case of the yield stress predictions described above. 
Examination of the database reveals that at 600 “C the alloys with 
low UTS also have very low Young’s modulus (about 170 GPa as 
opposed to the value of 195 GPa used for predictions). 

Of the three models, type-i best reflects the actual trends in the data. 
The existence of two complex models with low noise and test 
energy indicates that within the experimental noise in the data there 
is more than one way to mathematically model the data. However, 
only one of these models makes physical sense. This difference in 
prediction by two sets of models which are ostensibly similar 
shows the importance of thoroughly examining a neural network 
model in the light of metallurgical knowledge. 

Addition of NV to the database again produces two types of 
complex model, similar in form to those described above (e.g. 
figure 9, Nv=2.27). The relevance attributed to NV is quite high, 
and life is predicted to increase roughly linearly with NV by both 
models (figure 10). The difference in life is not predicted to be very 
large as the range of NV values in the database is quite small. This 
indicates that, although there is an effect of NV on fatigue 
resistance, the benefits obtained by trying to alter NV within the Ni- 
based alloy system would not be great as this class of alloys tends 
to exhibit a restricted range of NV values. 

205 210 215 220 225 230 235 240 245 
NV 

The effect of allov instabilitv 

It has been observed that some alloys which are unstable to the 
formation of the detrimental sigma phase have an increased 
resistance to fatigue crack propagation [24]. It is possible to 
express this instability in terms of an electron valency number (NV) 
of the matrix, which can be readily calculated from alloy 
composition [25]. This parameter, NV, was used as an input to the 
network in order to investigate this dependence. NV has the 
advantage, along with yield stress, of being a means of entering 
compositional information without needing to enter the composition 
itself (which would vastly increase the input dimensionality and 
hence the number of datasets needed to produce a robust model). 
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Figure 10 - Prediction of variation of life with NV 

Summarv and Conclusions 

A possible limitation on use of neural networks as predictive tools 
for design purposes is the amount of data required - large numbers 
of inputs require large, complete datasets which are difficult to 
compile. However success has been achieved in modelling 
Stage II fatigue crack growth behaviour in Ni-based superalloys. 
A basic dataset containing temperature, yield stress and Young’s 
modulus models trends adequately, while refining the database to 
include ultimate tensile strength improves the performance. 

The importance of careful construction of a database has been 
stressed, in order as far as possible to cover areas OF input space 
that may be interesting, as extrapolative predictions must be treated 
with caution. Experimental results that may be of use in a database 
should be carefully logged to ensure that relevant inputs, such as 
microstructural information, are recorded accurately. It has been 
seen that it is important to validate any neural network model 
produced to ensure that its predictions are in line with experience. 

It has been shown that it is possible to use a neural network to 
investigate and model trends in fatigue crack growth behaviour with 
variation in material properties, based either on proposed 
mechanisms or on observed empirical trends. A trend for increased 
Stage II fatigue life with increased instability to sigma-phase 
formation (indicated by electron valency number, NV) has been 
shown to exist, although the observed effect is small due to the 
small range of NV in Ni-based superalloys. 

While further work on validation of such networks is required 
before they can be used in design, if such work is done neural 
networks may prove to be of great benefit in future alloy design 
programmes. 
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