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Abstract 
 
An effort to study the heat treatment methods and resultant 
mechanical properties of Russian powder metallurgy (P/M) alloy 
EP741NP has been undertaken.  This effort has involved the 
detailed assessment of microstructures and mechanical properties 
from a sample of a production turbine engine disc as well as the 
manufacture, processing and characterization of two 
developmental lots of P/M EP741NP material processed by 
atomization, extrusion, isothermal forging and heat treating.  The 
effects of processing and composition on the structure and 
properties of powder metallurgy superalloys have been studied as 
part of an on-going effort to compare and contrast the physical 
metallurgy and mechanical property capabilities of EP741NP and 
similar alloys, such as AF115, AF21DA6, Alloy-10 and LSHR.  
From detailed characterization of developmental EP741NP heats, 
it has been determined that the published Russian heat treatment 
for EP741NP was not the thermal cycle used to produce the 
EP741NP material extracted from a production disc.  The 
identified heat treatment route was subsequently utilized to 
process additional developmental material.  The microstructure 
and mechanical properties from resultant material matched well 
with the previously evaluated production material.  The thermal 
process for this alloy is aimed at very high temperature 
applications where notched stress-rupture and long-life stability 
are critical. 
 

Introduction 
 
As turbine engine temperatures and stresses increase, more 
interest is focused on achieving greater material properties and 
achieving control of grain size by use of powder metallurgy (P/M) 
technology.  Previous studies on advanced P/M superalloys have 
shown that alloy composition and processing route greatly 
influence the final microstructure and mechanical properties that 
can be achieved. [1, 2, 3]   Recent efforts to study the Russian 
P/M superalloy EP741NP have shown that phase selection and 
final microstructure can be greatly affected by processing route [4, 
5, 6, 7].   

 
In these previous investigations, it was shown that as-hot 
isostatically pressed (HIP) and thermally processed materials can 
produce extensive prior particle boundaries (PPBs).  Deformation 
processing was shown to eliminate these detrimental features.  
Heat treatment of wrought processed EP741NP by various routes 
showed significant changes in microstructure and mechanical 
property response.   Rapid cooling from supersolvus temperatures 
and single, low temperature aging produced the greatest strength 
and creep capability.  The effect of hafnium (Hf) content variation 
on these properties was not evident, but it was thought that 
hafnium may have an impact on notch ductility, which led to 
notched stress-rupture testing in the current effort.   
 
Alloy design and optimization efforts are continuing to address 
the ever changing and further demanding needs for turbine engine 
applications.  Table 1 lists the chemistries for a range of advanced 
P/M superalloys along with the alloys investigated within this 
program. 
 
Developing the optimum microstructure for the maximum 
mechanical property capabilities has been the focus of many alloy 
development and application assessment efforts.  There is an 
increasing need for higher temperature capable disc materials.  
Efforts to improve notch-sensitivity by incorporation of hafnium 
have also been previously reported [8].   
 
This current effort is focused on three main areas: 1) Validation of 
the heat treatment process utilized for the production EP741NP 
disc material previously characterized; 2) Evaluation of the 
microstructure evolution of EP741NP and the effects of 
microstructure on mechanical properties capabilities for 
potentially very high temperature applications; and 3) Further 
understanding of the potential beneficial effects of hafnium and 
niobium on microstructure evolution and high temperature 
mechanical properties. 
 

 
TABLE 1.  The chemistry of several advanced P/M superalloys along with the chemistry of EP741NP and program alloys (Alloy-1 and 
Alloy-2).  (weight %) 
 
ALLOY  Al Co Cr Hf  Mo Nb Ti W Zr B C Ta 
EP741NP      5.1    15.8      9.0 0.25      3.9 2.6       1.8 5.5   <0.015  <0.015 0.04     - - 
Alloy-1         5.17  15.76 7.98 0.26 3.71 2.54 1.82 5.49 0.041 0.0094 0.041  - - 
Alloy-2  5.02 15.63 8.13  - - 3.61 2.62 1.82 5.50 0.015 0.0088 0.053  - - 
AF115  3.8 15 10.7 0.75 2.8 1.7 3.9 5.9 0.05 0.02 0.05  - - 
AF2-1DA6 4.6 10.0 12.0  - - 2.75  - - 2.8 6.5 0.1 0.015 0.04 1.5 
Alloy-10  3.8 15.0 11.0  - - 2.5 1.8 3.8 5.7 0.10 0.03 0.04  - - 
LSHR  3.5 21.0 13.0  - - 2.7 1.5 3.5 4.3 0.05 0.03 0.03 1.6 
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Experimental Procedure and Results 
 
A sample of a Russian turbine disc made from EP741NP was 
evaluated for microstructure and mechanical properties.  Two 
heats of P/M material were produced and processed into forgings 
with the EP741NP chemistry with and without hafnium.  The 
manufacture of two P/M EP741NP-type materials was performed 
by atomization, extrusion, isothermal forging and heat treatment.  
The details of the manufacturing route have been presented 
previously [6].   
 
Heat Treatment Development.  The sample of Russian disc 
material was evaluated in the as received production heat treated 
condition.  The published heat treatment for EP741NP is as 
follows: 1210ºC/8hrs/Furnace Cool (FC) to 1160ºC/Air Cool 
(AC) + 871ºC/32hrs/AC. [4].  Isothermally forged pancakes were 
produced from Alloy-1 and Alloy-2.  One half of each forging 
was heat treated per the published production heat treatment route.  
One half of each forging was heat treated with a route similar to 
other western alloys: 1210ºC/1hr/AC + 760ºC/16hrs/AC.   

 
Additional heat treatments were subsequently performed on each 
alloy to further investigate the possible heat treatment route used 
for the production disc material.  This effort allowed assessment 
of the heat treatment affect on phase and mechanical property 
evolution in Alloy-1 and Alloy-2 in comparison to the as-received 
disc material.  The identified heat treatments involved solution 
heat treating at 1210ºC/2hrs followed by controlled furnace 
cooling to between 871ºC and 760ºC and air cooling to room 
temperature; and aging at 871ºC/32hrs and air cooling to room 
temperature.  Additionally, a second, subsolvus solution heat 
treatment was also studied.  The effect of cooling rate for the 
furnace cooling step was also investigated.  Extensive 
metallography was performed on these samples, including 
selective etching and scanning electron microscopy (SEM) 
characterization, and phase extraction and X-ray diffraction 
assessment.  Tensile, creep and stress-rupture testing was also 
performed.  The heat treatments investigated within this program 
are graphically shown in Figure 1. 
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Figure 1.  Schematic of the solution heat treatment cycles assessed in the characterization of EP741NP program material. 
    
 
 

Results 
 
Microstructure Evolution and Phase Selection.  The 
microstructure of the Russian disc material was comprised of a 
high density of very cuboidal gamma-prime as seen in Figure 2. 
 

The microstructure evolution of EP741NP material was evaluated 
through a series of laboratory heat treatment trials.  The resultant 
microstructures from Alloy-1 and Alloy-2 were very similar.  The 
primary differences were the formation of Mu phase and a slightly 
reduced gamma-prime size within the hafnium bearing samples.  
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Further details of these comparisons have been previously 
reported [7]. 
 
Microstructures and phases in the EP741NP alloys heat treated to 
the published and western-type heat treatment methods were 
assessed in the as-heat treated condition and have been reported 
previously [6].  Figures 3 and 4 show representative 
microstructures that resulted from these thermal cycles. 
 

 
 
Figure 2.  Photomicrograph of the microstructure of EP741NP 
from a fully processed Russian turbine engine disc. [1] 
 
 
 

 
 
Figure 3.  Photomicrograph of the microstructure of Alloy-1 after 
processing with the published heat treatment for EP741NP. 
(Solution heat treatment cycle A + age.) 
 

 
 
Figure 4. Photomicrograph of the microstructure from Alloy-1 
after processing with the western-type heat treatment. (Solution 
heat treatment cycle B + 760ºC/16hr age.) 
 
The alternate heat treatments (2210ºC/2hrs/FC to (871ºC/AC or 
760ºC/AC) + 871ºC/32hrs/AC) were assessed to determine if 
these thermal routes would produce microstructures more closely 
resembling that observed in the Russian EP741NP disc material 
sample [4].   Metallography, extraction and X-ray diffraction were 
also performed on the EP741NP alloys given the alternate heat 
treat treatments.  Figures 5 and 6 show the typical microstructures 
that formed in the EP741NP Alloy-1 and Alloy-2 materials 
processed with the alternate heat treatment cycles. 
 

 
 
Figure 5.  Microstructure of EP741NP Alloy-1 after processing 
with the alternate heat treatment method (1210ºC/2hrs/FC 
(2.4ºC/min) to 871ºC/AC + 871ºC/32hrs/AC). (Solution heat 
treatment cycle C + age.) 
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Figure 6.  Microstructure of EP741NP Alloy-1 after processing 
with the alternate heat treatment method (1210ºC/2hrs/FC at 
2.4ºC/min to 760ºC/AC + 871ºC/32hrs/AC). (Solution heat 
treatment cycle D + age.) 
 
The effect of the cooling rate of the furnace cooling step was 
investigated.  It was believed that the control of the cooling rate 
would have a significant effect on the final gamma-prime 
morphology and subsequently the final mechanical property 
capabilities.  Figure 7 shows the results of the furnace cooling at a 
slightly faster cooling rate, which produced a microstructure that 
matches well with that from the Russian disc material. 
 

 
 
Figure 7.  Microstructure of EP741NP Alloy-1 after processing 
with the alternate heat treatment method (1210ºC/2hrs/FC at 
3.8ºC/min to 760ºC/AC). (Solution heat treatment cycle E.) 
 
 
A sample from Alloy-1 and Alloy-2 subjected to solution heat 
treatment E was re-solution heat treated at a subsolvus 
temperature to investigate the affect on the gamma-prime 

morphology.  Figure 8 shows the microstructure from the material 
that was given the subsolvus solution cycle F. 
 
 

 
 
Figure 8.  Microstructure of EP741NP Alloy-1 after heat treating 
with supersolvus solution cycle E and subsequently with 
subsolvus solution cycle F. 
 
 
The microstructures of all mechanical test bar samples were 
investigated.  The microstructure of this alloy appeared to be very 
stable with very limited change in gamma-prime morphology after 
the 871ºC stress-rupture testing.  Figure 9 shows the 
microstructure of the original Russian disc material after 871ºC 
creep testing. 
 

 
 
Figure 9.  Microstructure of the original Russian disc material 
after an 871ºC / 207MPa creep test. 
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The fracture surfaces on the notched stress-rupture samples were 
very interesting.  The materials given the published heat treatment 
showed ductile fracture surfaces on the notched stress-rupture 
samples, while the materials heat treated with the western-type 
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heat treatment showed brittle, intergranular fracture for a portion 
of each fracture surface.   

Discussion 
 
Effect of Chemistry and Heat Treatment on Microstructure 
Evolution.   

 
Phase Extraction and X-ray Identification.  The inert particles 
with Alloy-1 and Alloy-2 were electrolytically extracted in a 
10%HCl-methenol solution.  The phases present in the extracted 
residues were identified by X-ray diffraction.   

 
The heat treatment studies that were performed were an attempt at 
duplication of the microstructure observed in Russian process 
EP741NP [4] and to identify the heat treatment cycle used for the 
production disc material.  It was thought that lowering the 
temperature to which the samples were furnace cooled after 
solution treated would strongly influence the resultant 
microstructure and associated mechanical properties, which was 
confirmed.   It was also thought that the exact cooling rate for the 
furnace cool would be very critical for the development of the 
optimal gamma-prime morphology, which was also confirmed. 

 
Both alloys showed the presence of a Mu phase, M6C and MC 
phase.  HfO2 was found in Alloy-1 due to the presence of Hf in 
this alloy. 
 
Mechanical Properties.  The tensile properties of the as-received 
EP741NP disc material and program alloy materials were tested.  
The strength properties of these materials are shown in Table 2.  
The tensile properties are shown to be greatly influenced by the 
heat treatment applied. 

 
The formation of the relatively regular, uniform size cuboidal 
gamma-prime in these alloys is thought to be due to the 
partitioning of Nb, Ta and refractory alloys between the gamma-
prime and gamma phases.  The partitioning of these elements 
provides for lattice parameters that result in large misfit strains 
and sharpening up of the gamma-prime cuboidal shape.  The 
development of an essentially mono-modal distribution of large 
cuboidal gamma-prime structure is similar to that seen in heat 
treated cast blade materials that are utilized at very high 
temperatures.   

 
Creep and stress-rupture tests were performed on EP741NP 
Alloy-1 and Alloy-2.  These tests were conducted to determine the 
elevated temperature and stress capability of those materials that 
were heat treated to the published heat treatment, the western-type 
heat treatment, and the alternate heat treatment (1210ºC/2hrs/FC -
2.4ºC/min to 871ºC/AC + 871ºC/32hrs/AC).  Additionally, 
notched stress-rupture tests were conducted to assess the effects of 
heat treatment and hafnium content on notch sensitivity and notch 
ductility.  Table 3 listed the creep and stress-rupture from this 
project effort. 

 
 
  

 
    TABLE 2.  Tensile properties of the EP741NP disc material and program alloy forgings. 

 

Alloy
(inluding 

871C/32hr age) YS (MPa) UTS (MPa) %E %RA
EP741NP Production 941.0 1313.0 17.0 22.0
EP741NP Production 976.0 1303.0 18.0 24.5

1 A 975.6 1506.6 25.7 25.6
1 A 918.4 1489.3 27.0 24.7
2 A 973.6 1502.4 26.1 25.4
2 A 924.6 1479.7 28.6 30.7
1 B 1035.6 1529.3 20.6 28.1
1 B 1035.6 1530.7 26.0 25.7
2 B 1035.6 1537.6 25.8 27.7
2 B 1026.0 1531.4 26.1 27.1
1 A 939.1 1319.0 23.7 25.4
1 A 906.7 1292.1 26.2 28.5
2 A 918.4 1308.0 24.9 29.8
2 A 875.7 1283.2 26.7 29.2
1 B 1019.1 1353.5 21.5 26.4
1 B 1012.9 1342.5 22.8 26.4
2 B 1027.4 1370.0 21.8 25.4
2 B 1016.3 1356.9 22.3 22.6
1 C 750.9 1192.1 29.0 32.1
2 C 755.0 1192.8 28.9 30.2

Heat Treatment 
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The addition of niobium is believed to be based on two factors.  
First, niobium partitions to the gamma-prime and provides a 
larger volume fraction of gamma-prime.  This is consistent with 
the fact that the gamma-prime solvus is also higher for 
EP741NP than for many other P/M superalloys.  Niobium also 
provides for increased anti-phase boundary (APB) energy [9], 
which results in greater high temperature strength capability. 
 
The role of hafnium on the mechanical properties of superalloys 
is based on solid-solution strengthening of the gamma phase.  It 
is interesting to note that based on thermodynamic calculations, 
hafnium appears to partition to the initial gamma-prime phase 
that forms, but then partitions back to the gamma phase at lower 
temperatures. [4] This reversal of partitioning is very unusual 
and may be significant in understanding the total extent of the 
role of hafnium in superalloys.  Hafnium may also affect the 
preferential precipitation of Mu and M6C adjacent to the large 
gamma-prime particles associated with higher temperature 
precipitation on grain boundaries during the solution heat 
treatment cycle.  
 
Hafnium may play a more important role by improving notch-
rupture ductility by modifying the grain boundaries in 
EP741NP.  The limited results from this effort indicate a 
potential for this based on increased notched stress-rupture test 

lives for both published and western-type heat treatment 
processed materials, although heat treatment route appears to 
have the dominant effect in controlling notch-sensitivity. 
 
The MC carbides in EP741NP alloys are very stable.  The lattice 
parameter for this phase is 4.40Å, which indicates that this is not 
totally a niobium carbide, but contains small amounts of Mo, W, 
Ti and Cr.  This is confirmed by probing of the extracted MC 
residue particles. 
 
The regular intermetallic phases that are found in other 
superalloys in a temperature range of 871ºC and 1150ºC are 
M6C, and M23C6.  The M6C phase is high in Mo,W and Cr and is 
more commonly found at the higher temperatures.  M23C6 is 
always found if sufficient carbon is available.  In addition to 
being temperature dependant, M6C is generally formed within 
the matrix while M23C6 is found as discrete particles in the grain 
boundaries at 871ºC. 
 
The presence of Mu phase due to aging at 871ºC shows that Mu 
phase is the predominate phase reaction at 871ºC and not M23C6 
in the EP741NP alloys.  Mu and M6C seemed to be native of the 
precipitate in the grain boundaries.    
 

 
 
TABLE 3.  Creep and stress-rupture properties for EP741NP Alloy-1 and Alloy-2. 
 

Temp (ºC) Stress (MPa) Material Alloy 871C/32hr age) (hrs) Creep (hrs) (hrs) %EL Test Type
649 690 Disk Material EP741NP Production - - * NA Smooth Creep-Rupture
871 207 Disk Material EP741NP Production - - 394.2 NA Smooth Creep-Rupture
704 690 Disk Material EP741NP Production - - 1090 NA Smooth Creep-Rupture
704 690 Program Forging 1 A 106 209.4 NA NA Smooth Creep-Rupture
704 690 Program Forging 1 B 109.6 348 1717 3.6 Smooth Creep-Rupture
700 500 Program Forging 1 A 752.2 discontinued NA NA Smooth Creep-Rupture
700 500 Program Forging 1 B 1254 1280** NA NA Smooth Creep-Rupture
725 500 Program Forging 1 A 243.5 discontinued NA NA Smooth Creep-Rupture
725 500 Program Forging 1 B 468.5 discontinued NA NA Smooth Creep-Rupture
704 690 Program Forging 2 A 89 184 1960 6.1 Smooth Creep-Rupture
704 690 Program Forging 2 B 142.3 351 1205 2 Smooth Creep-Rupture
700 500 Program Forging 2 A 1530 discontinued NA NA Smooth Creep-Rupture
700 500 Program Forging 2 B 1260 1338*** NA NA Smooth Creep-Rupture
725 500 Program Forging 2 A 208.8 524 NA NA Smooth Creep-Rupture
725 500 Program Forging 2 B 418 discontinued NA NA Smooth Creep-Rupture
750 690 Program Forging 1 A 2.4 4.9 172 7.9 Smooth Creep-Rupture
750 690 Program Forging 1 B 5.8 15.2 159 7.6 Smooth Creep-Rupture
760 500 Program Forging 1 A 21.4 53 NA NA Smooth Creep-Rupture
760 500 Program Forging 1 B 50.2 117 NA NA Smooth Creep-Rupture
704 690 Program Forging 1 A 104 195 NA NA Smooth Creep-Rupture
704 690 Program Forging 1 B 163 386 NA NA Smooth Creep-Rupture
750 690 Program Forging 2 A 2.3 4.7 136 9.9 Smooth Creep-Rupture
750 690 Program Forging 2 B 5 14.5 135 5.5 Smooth Creep-Rupture
760 500 Program Forging 2 A 21.3 51 NA NA Smooth Creep-Rupture
760 500 Program Forging 2 B 12.3 73.3 NA NA Smooth Creep-Rupture
704 690 Program Forging 2 A 65.7 154 NA NA Smooth Creep-Rupture
704 690 Program Forging 2 B 118 300 NA NA Smooth Creep-Rupture
750 690 Program Forging 1 A - - 216.6 7.5 Smooth Creep-Rupture
750 690 Program Forging 1 B - - 90 Notch Break Combo Smooth/Notched Rupture
750 690 Program Forging 2 A - - 193.1 8.5 Combo Smooth/Notched Rupture
750 690 Program Forging 2 B - - 0.1 Notch Break Combo Smooth/Notched Rupture
750 690 Program Forging 1 C - - 111 9.5 Combo Smooth/Notched Rupture
750 690 Program Forging 2 C - - 106.7 10.5 Combo Smooth/Notched Rupture

Heat Treatment 
(including 

Time to 
0.1% Creep Time to 0.2% 

Time to 
Failure 

 
 

* Sample exhibited 0.0% creep after 1500hrs, so sample was re-tested at 704C/690MPa 
** Temperature increaed to 750C and stress increased to 552 MPa at 1254 hrs 
*** Temperature increased to 750C at 1260 hrs 
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Long exposures at 750ºC can produce the onset of M23C6 
precipitation on grain boundaries.  The formation of M23C6 
appears to be reduced by the addition of niobium and hafnium, 
and the utilization of the high temperature aging treatment which 
stabilized the structure through the formation of Mu phase.  This 
feature of EP741NP may provide for excellent high temperature 
stability where grain boundary M23C6 films may not form and 
embrittle the material as has been seen with other alloys. 
 
The evolution of phases in EP741NP with and without hafnium 
appears to progress as follows:  Large amounts of primary MC 
carbide is formed and stabilized at the solution heat treatment 
temperature.  As the materials are slow cooled, a regular array of 
intragranular cuboidal gamma-prime is formed along with M6C, 
until the material reaches 871ºC, where Mu phase also begins to 
precipitate.   
 
The microstructure developed in the EP741NP materials utilizing 
the published heat treatment route did not provide the same 
microstructure as that observed in production disc material.  This 
is thought to be due to the fact that the cooling route in the 
published method must be different than that used for the 
production disc component. 
 
The processing of P/M EP741NP material is very unique.  A very 
high temperature HIP cycle is used [1], which is believed to be 
aimed at dissolution of prior particle boundaries and stabilization 
of primary MC carbides.  The chemistry and microstructure 
designed for the production EP741NP material appears to be 
targeted at very high temperature applications.  The strength of 
this alloy in the production heat treatment conditions is not very 
high, although the elevated temperature creep strength is superior 
to other comparable disc alloys and processes.  The 
microstructure, which consists of a very coarse, as-HIP’d gamma 
grain size, and a single distribution of cuboidal gamma-prime 
(similar to blade alloy microstructures).  The high temperature 
strength, though modest, may be higher than other comparable 
materials, due to the increase in gamma-prime phase 
strengthening and stability from the addition of niobium, and 
hafnium solid-solution strengthening of the gamma-phase.  The 
very long (32hrs), high temperature (871ºC) age cycle, may 
actually be a stabilization cycle where near equilibrium 
compositions of M6C, Mu, gamma and gamma-prime phases are 
formed and stabilized.  The extensive partitioning of chromium to 
the gamma phase may also enable high temperature application 
with enhanced corrosion resistance.  EP741NP has been observed 
to be much more difficult to electrolytically etch than other 
nickel-base alloys, and required much longer etching time.  The 
heat treatment method also provides for a large gamma-prime 
content and an ability to process large section-size components 
with limited risk of thermally-induced (quench) cracking as 
furnace cooling is employed following the solution heat treatment.  
 
 
Effect of Heat Treatment and Chemistry on Tensile, Creep and 
Stress-Rupture Properties of EP741NP.   
 
A study to determine the effects of thermal processing and alloy 
chemistry on the mechanical property behavior of EP741NP 
material was performed.  The two program heats of EP741NP 
material, one containing Hf and the other without, were given the 
published heat treatment for EP741NP (solution cycle A), a 

western heat treatment (solution cycle B) and an alternate heat 
treatment involving furnace cooling from 1210ºC to 871ºC at a 
relatively low rate (solution cycle C).  All of the materials were 
aged at 871ºC for 32 hours. The samples were tensile, creep and 
stress-rupture tested over a range of temperatures and stresses. 
 
The tensile properties of EP741NP are sensitive to heat treatment 
and final developed microstructure.  Figure 10 shows the 
comparison of yield strength properties for the program materials 
along with that of the production disc material.  It can be seen that 
the material with the finest gamma-prime structure resulted in the 
highest tensile properties.  The program materials heat treated 
with solution heat treatment “A” provided slightly lower 
properties as compared to the production disc material.   
 
The strength of this alloy appears to be controlled by both the size 
and distribution of the initial, larger gamma-prime size population 
and the size and distribution of a secondary, smaller size gamma-
prime particle population.  This is similar to blade alloys which 
have a large volume fraction of cuboidal gamma-prime and very 
small gamma-prime with the gamma matrix between the larger 
gamma-prime particles.  
 
The material given solution heat treatment “C” appeared to have a 
similar microstructure to that of the disc material, but the large 
gamma-prime particles were larger and less cuboidal.  The slow 
cooling of this cycle to the aging temperature appears to have 
greatly reduced or eliminated secondary gamma-prime particles 
and hence greatly reduced the tensile strength. 
 
Creep and stress rupture testing was performed on the program 
materials.  In addition to smooth test bars, notched stress-rupture 
bars were utilized to assess notch sensitivity of the materials 
processed by the various heat treatments. 
 
Figure 11 shows a Larsen-Miller stress-rupture plot for the stress-
rupture results from the program materials along with published 
EP741NP values and prior published U720 properties [4].  It can 
be seen that the stress-rupture capabilities of EP741NP are very 
good compared to U720 disc and blade materials. 
 
Notch sensitivity assessments were also performed.  The results 
showed that the hafnium containing sample given solution cycle B 
broke in the notch of notched stress-rupture specimen after 90 
hours, while the one without hafnium broke in 0.1 hours.  The 
samples given solution heat treatment cycle A did not suffer notch 
failures, and failed in 216 hours (hafnium-containing alloy) and 
193 hours (Hf-free alloy).  The samples given solution heat 
treatment cycle C did not show notch failures, and had stress-
rupture lives of approximately 110 hours. 
 
The structures of the samples given the published heat treatment 
did not produce the microstructure observed in the original 
Russian disc material, and showed large irregular gamma-prime 
and fine secondary gamma-prime.  The samples given the 
western-type heat treatment showed only very fine, uniform 
gamma prime.  The alternate heat treatment samples showed 
microstructures much closer to those of the Russian disc material, 
but the size scale and morphology of the gamma-prime was 
slightly different.   
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Figure 10.  Plot of yield strength properties for EP741NP disc material and program materials after a series of different heat treatments. 
 
 
The sample given solution heat treatment B that broke in 0.1 
hours showed fewer grain boundary precipitates than the sample 
that broke at 90 hours.  Selective etching showed that the grain 
boundaries contained limited amounts of M23C6 as evidence from 
observations after selectively etching for chromium-rich phases.  
The formation of M23C6 was seen only after long thermal 
exposures. 
 
Notch sensitivity of the EP741NP material was shown to be 
strongly related to the microstructure and tensile strength.  As the 
material increased in tensile strength and increased in quantity of 
fine gamma-prime, notch sensitivity increased and stress-rupture 
lives decreased. Additionally, it appears that the presence of 
hafnium may play a secondary, beneficial role in increasing 
stress-rupture life when comparing similar microstructure/strength 
materials.  Hafnium is potent in binding oxygen and may 
influence the grain boundary oxygen content in EP741NP. 
 
The stress-rupture fracture modes for the materials processed with 
solution heat treatment B showed portions of the fracture surface 
that are intergranular.  This indicates weaker grain boundaries as 
compared to the matrix material, which is consistent with the 
observation of grain boundaries with limited precipitation of 

phases as evidenced from the metallography, extraction and XRD 
efforts on the EP741NP Alloy-1 and Alloy-2 samples given the 
western-type heat treatment. 
 
The creep and smooth stress-rupture strength of EP741NP appears 
to be favorable over U720 disc material at high temperature, low 
stress conditions and U720 blade material as low temperature, 
high stress conditions.  Under low temperature, high stress 
conditions, material that is higher in tensile strength prevails.  
This was seen with the combinations of heat treatments that were 
performed on the EP741NP materials. 
 
The fracture surface of tested stress-rupture bars from the original 
EP741NP disc material that was consolidated by HIP processing 
primarily showed clear prior particle boundary (PPB) failures.  
The fracture surfaces from these tested specimens showed an 
array of spherical particle surfaces at the fracture surface. 
 
The program material samples that were consolidated by extrusion 
showed no evidence of PPBs or original particle surfaces on the 
fracture surface of any stress-rupture specimen.  This is consistent 
with the use of extrusion consolidation methods. 
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Figure 11.  Larsen-Miller stress-rupture plot for EP741NP and published U720 material properties. 
 
 
 

Conclusions 
 
An alloy assessment program was undertaken to investigate the 
effects of chemistry and processing on the microstructure and 
mechanical properties development in powder metallurgy 
EP741NP.  Extensive metallographic and crystallographic 
investigations were undertaken to study the microstructure and 
phases within the program materials.  Stress-rupture testing was 
performed to assess the effects of chemistry and microstructure.  
The results of these efforts indicated: 
 
- The critical steps in the heat treatment used to manufacture 
production EP741NP discs have been identified. 
 
- The cooling rate following supersolvus solution heat treatment 
was shown to greatly influence the phase selection and 
microstructure within advanced powder metallurgy superalloys. 
 
- Stress-rupture ductility debits and notch sensitivity can result 
from high volume fractions of fine gamma-prime. 
 
-  The results from this effort showed that hafnium additions had a 
beneficial effect on improving notch sensitivity in high strength 
material. 
 
-  Niobium appears to enhance the capability of formation of  
stable MC, M6C and Mu phases along with a uniform single 
distribution of cuboidal gamma-prime. 
 
 

 
 
-  Mu-phase formation in the place of M23C6 carbides during the 
long, high temperature aging cycle appears to provide enhanced 
high temperature capability with limited effect of grain boundary 
film formation during long, high temperature exposures. 
 
- The alloy displayed very good phase and microstructure 
morphology stability with limited phase precipitation on grain 
boundaries and gamma-prime morphology change after extended 
high temperature exposure. 
 
- The unique creep capabilities of this alloy due to the high 
concentration of relatively coarse cuboidal gamma-prime and lack 
of M23C6 grain boundary films may fit high temperature 
applications. 
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