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Abstract 

 
Ni-base single crystal (SC) superalloys with high concentrations 
of refractory elements prone to generate a diffusion layer called 
Secondary Reaction Zone (SRZ) beneath their bond coating 
during long time exposure at high temperatures. SRZ causes a 
reduction of the load bearing cross section and it is detrimental to 
the creep properties of thin-wall turbine airfoils. In this study, a 
new bond coat system, “EQ coating” which is thermodynamically 
stable and suppresses SRZ has been proposed. Diffusion couples 
of coating materials and substrate alloys were made and were heat 
treated at 1100°C for 300h and 1000h. Cyclic oxidation 
examinations were carried out at 1100°C in air and the oxidation 
properties of EQ coating materials were discussed. High velocity 
frame sprayed (HVOF) EQ coatings designed for 2nd generation 
Ni-base superalloy were deposited on 4th generation Ni-base 
superalloys. The stability of microstructure at the interface and 
creep property of the coating system were investigated. Less than 
50µm-thick of the interdiffusion zone and no SRZ were observed 
in EQ coating system after 300h heat treatment at 1100°C, in 
contrast to beyond 90µm-thick of diffusion zone and 140µm-thick 
of SRZ in the conventional CoNiCrAlY coating system. Creep 
strength of Al-diffusion and CoNiCrAlY coated 4th generation 
superalloys showed decrease in thin creep specimens, but EQ 
coated 4th generation superalloy showed equivalent creep strength 
for bare material. 
 

Introduction 
 
Ni-base superalloys which have excellent high-temperature 
strength and oxidation resistance are required for high output and 
high efficiency of gas turbines and jet engines. Advanced 
generation Ni-base superalloys, which contain large amount of 
strengthening elements and platinum-group metals, realize 
excellent high-temperature strength and suppression of TCP phase 
formation [1, 2]. However, these alloys are required to be applied 
with oxidation-resistant coating on the surface for the practical 
use because they are likely to have lower oxidation resistance than 
the previous generations of superalloys due to the nature of the 
alloying elements. 
 
Applying the conventional coatings such as Pt-Al or MCrAlY to 
Re containing advanced generation single-crystal superalloys, a 
harmful layer so called secondary reaction zone (SRZ) is formed 
at the interface of coating and substrate [3-5] due to the 
interdiffusion during the high temperature exposure and the 
oxidation resistance of the coating layer and the mechanical 
properties of the substrates result in degradation [6]. Various 
techniques such as “diffusion barrier” [4, 7-9] and “carburization” 
[5] have been employed to minimize interdiffusion between the 
bond coat and the substrate, but these techniques still have some 
problems in complicated manufacturing process and long-time 
exposure in high-temperature.  
 
A new concept of coating system, “EQ coating” has been 
proposed in our previous research [10-14]. In this system, stable 

phases in thermodynamically equilibrium with substrate such as γ’ 
phase are used as coating materials, and SRZ formation between 
the coating and the substrate is suppressed. Interdiffusion is 
minimized because chemical potentials of alloying elements in the 
substrate and coating in equilibrium state are equal to each other. 
EQ coating is very fantastic technique stabilizing the 
microstructure of bond coat/substrate interface. The oxidation 
resistance of γ’ is the best in the γ/γ’ tie-line compositions which 
are in equilibrium with the substrate superalloy [11], so we 
suggest using γ’ phase as the EQ coating. However, depending on 
the substrate superalloys, the oxidation resistance of γ’ phases are 
inferior to the conventional MCrAlY coating. Usually, β phase 
has superior oxidation property to γ’ phase and it is possible to use 
β phase as EQ coating [13, 14] with superalloys which are in 
equilibrium with β phase. Thus, improvement the oxidation 
property of γ’ EQ coating for the advanced Ni-base superalloy is 
required. In this study, the compositions of γ’ phase of Ni-base 
superalloys are modified to improve the oxidation resistance and 
the SRZ formation at the interface caused by the composition 
adjustment is investigated. Optimal composition of EQ coating for 
the advanced superalloys is found for the practical use. 
 
γ/γ’ Phase EQ Coating  
 
Conventional Ni-base superalloys consist of regularly-arranged γ 
phase and γ’ phase. These two phases are in thermodynamical 
equilibrium, and so chemical potential µi of alloying elements i 
(i=Ni, Al, etc…) in each phase are equal, and expressed as 
following equation.  
 'γγ

ii µµ = .          (1) 
γ phase and γ’ phase alloys and γ/γ’ tie-line alloys which have 
completely same composition as γ phase and γ’ phase of  Ni-base 
superalloy substrate  are able to be used as EQ coating material. 
Figure 1 shows (Ni, X)-(Al, Y) pseudo-binary phase diagram. 
Substrate S on a broken line, which means γ/γ’ tie-line, consists of 
γ phase of composition A and γ’ phase of composition B. 
Concentration of alloying element i in alloy C on the tie-line is 
expressed as 
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Figure 1. (Ni, X)-(Al, Y) pseudo-binary phase diagram. 
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 BAC )1( iii fccfc +−= ,         (2) 
where f is mole fraction of γ’ phase. Seeing microstructure, γ 
phase of composition A and γ’ phase of composition B are 
intermingled with the ratio (1-f): f and the chemical potential of 
alloying element i is expressed as  
 )γ'C(γ)'γ(B)A(γ +== iii µµµ  .        (3) 
Substrate S has different f but same structure as alloy C, so the 
following equation is also given. 
 )γ'C(γ)'γ(B)A(γ)'γS(γ ++ === iiii µµµµ .        (4) 
From this equation, it is obtained that alloys A, B and C are in 
equilibrium with substrate S and there is no driving force of 
interdiffusion because the difference of the chemical potential of 
element i is zero between substrate S and alloys A, B and C. In 
other words, using alloys A, B and C as bond coat, SRZ formation 
due to the interdiffusion of alloying elements is expected to be 
suppressed. In this study, this concept of EQ coating is 
investigated and oxidation resistance of EQ coating is evaluated.  
 
2nd generation Ni-base single-crystal superalloy TMS-82+ [15] 
and 5th generation Ni-base single-crystal superalloy TMS-173 [16] 
were used as substrates. The compositions of γ phase and γ’ phase 
at 1100 ºC were calculated by Alloy Design Program [17] and 
these compositions were used for coating materials. Compositions 
of samples used in this study are shown in Table I. 
 
β Phase EQ Coating 
 
β phase in Ni-base superalloys has BCC structure and generally 
contains large amount of Al and Cr. Consequently, formation of 

Al2O3 protective scale and improvement of oxidation resistance 
compared with γ/γ’ EQ coatings is expected. Figure 2 illustrates 
phase diagram of Ni-Al-Cr ternary system at 1100 °C. In the 
region of γ+γ’+β equilibrium state (triangle DEF), the following 
equation 
 )F(β)'γ(E)D(γ

iii µµµ ==          (5) 
is given. If a substrate is located on γ/γ’ tie-line DE, then this 
substrate consists of γ phase at point D and  γ’ phase at point E. 
Thus, the following is obtained. 
 )F(β)'γ(E)D(γ)'γγsubstrate(

iiii µµµµ ===+ .        (6) 
From this equation, it is concluded that using β phase coating on 
point F against γ/γ’ substrate on line DE, the interdiffusion at the 
interface of substrate and coating is suppressed in theory. 
Moreover, mixed phase of γ, γ’ and β for example β+γ’ or β+γ’+γ 
are able to be used as coating if they are in equilibrium state, so 
the design of the coating is possible considering not only the 
oxidation resistance but also the mechanical properties. However, 
in the conventional Ni-base superalloys, alloy in equilibrium state 
with β phase does not exist. In this study, Ni-base superalloy in 
equilibrium with β phase is developed and the possibility of β 
phase as EQ coating is investigated. 
 
Compositions of the substrates and coating materials were 
determined by using thermodynamic calculation software, 
Thermo-Calc Software (Thermo-Calc Software, Sweden). γ+γ’+β 
three-phase equilibrium composition at 1100 °C were calculated 
for Ni-Al-Co-Cr-Hf-Mo-Ta-W system. Substrates were designed 
as consisting of γ phase and γ’ phase with mole ration of 0.5 and 
the compositions of coating materials were determined as the 
compositions of β single phase. Nominal compositions of the 
substrate alloys and coating alloys used as samples are shown in 
Table I. 
 

Experimental Procedure 
 
Concept of EQ coating was confirmed in the diffusion couple 
experiment. Equilibrium compositions of γ, γ’ and β phase of each 
substrates were calculated by using Alloy Design Program [17] 
developed in NIMS and Thermo-Calc software (Thermo-Calc 
Software, Sweden) for the temperature of 1100 ºC. Following the 
composition shown in Table I, samples of coating materials were 
arc melted. After homogenization, each sample was cut into 
10mm in diameter and 5 mm in thickness. Sample surfaces were 
polished by 0.05µm-φ Al2O3 particles into mirror surface and 
cleaned. After cleaning, coating materials were coupled with the 
single-crystal superalloy substrates. Diffusion couples of substrate 
alloy and coating alloy were bonded by pressing against each 
other using ceramic holder and heated at 1100 ºC for 1 h in 

Table I. Nominal Compositions of Substrates and Coatings. (wt%, Ni bal.) 
Sample Co Cr Mo W Al Ti Ta Hf Re Ru 

substrate 7.7  4.6 1.8 8.6 5.3 0.5 6.3 0.1  2.4  - 
γ 10.5  7.6 2.6 10.0 2.9 0.2 3.4 0.0  4.2  - TMS82+ 
γ' 4.7  1.4 0.9 7.2 7.9 0.7 9.5 0.2  0.5  - 
substrate 5.6  3.0 2.8 5.6 5.6 - 5.6 0.1  6.9  5.0  

TMS-173 
γ' 4.2  1.5 1.5 5.3 7.8 - 8.0 0.2  2.6  3.9  
substrate 8.7  10.6 2.2 4.4 6.2 - 8.5 0.2  - - 

TMS-209 
β 7.3  7.9 1.1 0.1 17.4 - 1.3 0.1  - - 
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Figure 2. Ni-Al-Cr ternary phase diagram at 1100 ºC.
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vacuum furnace. Then the couples were heated at 1100 °C for 300 
h - 1000 h in air. Oxidation resistances of coating materials were 
examined by 1h cyclic oxidation examination at 1100 ºC in air. 
Cross sections of each diffusion couple were observed by 
Scanning Electron Microscope (SEM) and concentration profiles 
were analyzed by Energy Dispersive X-ray Spectroscopy (EDX) 
and Electron Probe Microanalyzer (EPMA). Oxides formed on the 
surface after the oxidation examinations were observed and 
oxidation mechanisms were discussed. 
 
The oxidation resistance of EQ coating materials can be further 
improved without losing the concept. The modified EQ coatings 
for the 2nd and 5th generation superalloys are shown in Table II. 
TMS-82+γ’, TMS-173γ’, Re-modified Rene’N5γ’ (TMBC-1) and 
CoNiCrAlY alloy, which has same composition with commercial 
CoNiCrAlY coating Amdry 9954 (Sulzer Metco Ltd), were arc 
melted. Y, Hf and Si were added to each material to improve the 
oxidation resistance. Cyclic oxidation properties of the EQ 
specimens were examined at 1100 ºC and 1150 ºC. Modified EQ 
coatings were coupled with various substrates and heat treated at 
1100 ºC for 300h. Thickness of the diffusion zone and SRZ were 
evaluated for these diffusion couples by using SEM and EDX. 
 
Composition of EQ coating TMBC-1 (Rene'N5γ'-Re+Y) designed 
for 2nd generation superalloy Rene’N5 was used as that of spray 
powder for High Velocity Frame Spray (HVOF spray). Amdry 
9954 was also used for the comparison. Substrates were 4th 
generation Ni-base superalloys TMS-138 and TMS-138A. 
Nominal compositions of coatings and substrates are shown in 
Table III. TMBC-1 is designed as γ’ phase of Rene’N5 and Re 
was removed, so improvement of the oxidation resistance and 
reduction of the material cost are able to expected in this coating. 

100μm-thick of EQ and Amdry9954 coating were applied to 
TMS-138 and TMS-138A by HVOF. Samples were heat treated at 
1100°C for 300h in air. After heat treatment, cross sections of 
samples were observed by SEM and compositions of phases 
precipitated at the interface were analyzed by EDX.  
 
High temperature creep properties of 4th generation single crystal 
superalloy TMS-138 with various coating were investigated. Plate 
test pieces of TMS-138 with 3mm of width were used. The 
thicknesses of specimens were varied from 1mm to 4mm. Tensile 
axis of specimens were within 10° from <100> orientation. EQ 
coating TMBC-1 and conventional coating Amdry9954 were 
applied to the surface of plate test pieces by HVOF. Al-diffusion 
coating and Pt-Al coating were also applied by following 
procedure. Aluminum halide was reduced on the surface of 
specimen at the temperature same as primary ageing temperature. 
Aluminum was diffused into the substrate and β-NiAl layer was 
formed at whole surface. Samples were partly platinum-plated 
before Al-diffusion process and Pt-Al coating was formed. These 
Al and Pt-Al diffusion coated samples were secondary aged and 
used for the creep test. Creep test were conducted at 1100C with 
137MPa. 
 

Results and Discussion 
 
Cross sections of diffusion couples of TMS-82+ and coating 
materials (a) TMS-82+γ and (b) TMS-82+γ’ after diffusion at 
1100 °C for 300 h are shown in Figure 3. In both diffusion 
couples, SRZ was not found and very thin diffusion layers were 
only observed. In γ’ phase alloy, little amount of disk-like TCP 
phase was found but these particles disperse uniformly throughout 
the whole sample and it is estimated that the reason of this TCP 

Table II. Nominal Compositions of Modified EQ Coatings. (wt%, Ni bal.) 
Sample Co Cr Mo W Al Ti Ta Hf Re Ru Si Y

TMS82+γ' 4.7  1.4  0.9  7.2 7.9 0.7 9.5 0.2 0.5 - - -
TMS-82+γ'+0.5Si 4.7  1.4  0.9  7.2 7.9 0.7 9.5 0.2 0.5 - 0.5  -
TMS-82+γ'+0.1Si 4.7  1.4  0.9  7.2 7.9 0.7 9.5 0.2 0.5 - 0.1  -
TMS-82+γ'+0.1Y 4.7  1.4  0.9  7.2 7.9 0.7 9.5 0.2 0.5 - - 0.1 
TMBC-1 6.2  4.0  1.0  4.5 8.1 - 9.9 0.4 - - - 0.1 
TMS-173γ' 4.2  1.5  1.5  5.3 7.8 - 8.0 0.2 2.6 3.9  - -
TMS-173γ'+0.5Si 4.2  1.5  1.5  5.3 7.8 - 8.0 0.2 2.6 3.9  0.5  -
TMS-173γ'+0.1Si 4.2  1.5  1.5  5.3 7.8 - 8.0 0.2 2.6 3.9  0.1  -
TMS-173γ'+0.5Y 4.2  1.5  1.5  5.3 7.8 - 8.0 0.2 2.6 3.9  - 0.5 
TMS-173γ'+0.1Y 4.2  1.5  1.5  5.3 7.8 - 8.0 0.2 2.6 3.9  - 0.1 
TMS-173γ'+0.5Hf 3.9  1.2  1.8  5.5 7.8 - 7.9 0.7 1.8 3.4  - -
TMS-173γ'+0.1Hf 3.9  1.2  1.8  5.5 7.8 - 7.9 0.3 1.8 3.4  - -

 

Table III. Nominal Compositions of Substrates and HVOF Sprayed Coatings. (wt%, Ni bal.) 
Sample Co Cr Mo W Al Ta Hf Re Ru Y 
TMS-138  5.9  2.9 2.9 5.9 5.9 5.9 0.1 4.9 2.0  - 
TMS-138A  5.8  3.2 2.8 5.6 5.7 5.6 0.1 5.8 3.6  - 
TMBC-1 6.2  4.0 1.0 4.5 8.1 9.9 0.4 - - 0.1  
Amdry9954 38.5  21.0 - - 8.0 - - - - 0.5  
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formation is not due to the diffusion but heat treatment condition. 
From the concentration profile analysis of Al and Co in TMS-
82+γ/TMS-82+ and TMS-82+γ’/TMS-82+ diffusion couples 
analyzed by using EPMA, the thicknesses of diffusion layers were 
evaluated as 5µm and 15µm, respectively. In the conventional 
coating system, TMS-82+ is reported to form over 100µm of the 
diffusion layer with NiCrAlY coating [11]. From these results, 
using γ and γ’ phase of TMS-82+ as coating of TMS-82+ 
substrate, it is concluded that the thickness of the diffusion layer 
between the coating and the substrate will be suppressed 
drastically. 
 
Results of the cyclic oxidation examination performed to optimize 
the EQ coatings in γ/γ’ tie-line alloys are shown in Figure 4. The 
examination was performed at 1100 °C in air, using TMS-82+, 
TMS-82+γ and TMS-82+γ’. It is clarified from this result that 
alloys of TMS-82+γ shows largest mass increase in the first few 
cycles and decrease in the following cycles due to fast oxidation 
and spallation. TMS-82+γ’ shows most excellent oxidation 
resistance in 50 cycles’ examination and it is obviously improved 
from that of TMS-82+. Difference of the oxidation property of γ 
phase and γ’ phase is due to the structure of oxide. While γ’ phase 
forms protective Al2O3 layer, γ phase mainly forms non-protective 
thick NiO and particles of Al2O3 inner oxide. Thus, it is concluded 
that γ’ phase is promising material for oxidation-resistant coating.  

 
The effect of γ’ EQ coating on 5th generation superalloy was also 
investigated using the diffusion couple of 5th generation 

superalloy TMS-173 and its γ’ phase. As shown in Figure 5, 
diffusion layer of 2µm thick was obtained after the diffusion at 
1100 °C for 1000h. Thus, it is confirmed that the concept of EQ 
coating is able to be applied to Ru-containing 5th generation Ni-
base superalloy.  

 
The idea of EQ coating is now developed into β phase coating. A 
single crystal of Ni-Al-Co-Cr-Hf-Mo-Ta-W system superalloy 
TMS-209 and its β phase alloy were designed as they are in 
equilibrium. TMS-209, γ/γ’ substrate was cast in DS furnace and 
solution heat treated at 1280 ºC for 5h. Primary aged at 1100 ºC 
for 4h and secondary aged at 870 ºC for 20h. This alloy has 
almost same creep strength as 1st generation superalloy CMSX-2 
[14]. TMS-209β was arc melted. Diffusion couple of TMS-
209/TMS-209β system was heat treated at 1100 ºC for 460h and 
cross section observation was conducted as shown in Figure 6. 
Although the composition of arc-melted material was not accurate 
as the equilibrium state, the diffusion zone at the interface was 
minimized as only 10µm.  From this result, it is confirmed that the 
concept of EQ coating is possible to be applied to β phase coating 
and Ni-base superalloy in equilibrium with β phase.  
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Figure 3. Cross sections of diffusion couples of (a) γ-EQ coating and (b) γ’-EQ coating with TMS-82+ 

substrate heated at 1100 ºC for 300h.  
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Figure 5. Cross section of TMS-173γ’/TMS-173 
diffusion couple diffused at 1100 ºC for 1000h. 
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superalloy TMS-209 heated at 1100ºC for 460h. 
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Figure 7 shows cyclic oxidation properties of EQ coatings for 2nd 
generation superalloys TMS-82+ and Rene’N5 at 1100ºC. 0.5wt% 
of Si addition to TMS-82+ increase mass gain due to the 
accelerated oxidation but 0.1wt% of Si and 0.1wt% of Y make 
oxidation rate slower. Re-removed and Y-added Rene’N5γ’ 

(TMBC-1) shows better oxidation resistance than modified TMS-
82+γ’ because of its high Al and Cr content. An experiment to 
improve the oxidation resistance of γ’-EQ coating for 5th 
generation superalloy TMS-173 was also attempted. Results of Hf, 
Si and Y addition are shown in Figure 8. Mass change of TMS-
173γ’ showed decrease due to the spallation. Hf, Si and Y 
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Figure 7. Cyclic oxidation properties of EQ coatings for 2nd generation superalloys. 
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Figure 8. Improvement of oxidation resistance of EQ coating of 5th generation superalloy. 
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Figure 10. Cross section of HVOF sprayed (a) CoNiCrAlY and (b) EQ coating on TMS-138A substrate exposed to 1100℃ for 300h. 

addition improved the adhesiveness of the scale and the spallation 
was suppressed. 0.1wt% of Y showed higher mass increase than 
0.1wt% of Si and Hf, and 0.5wt% of Y, Si and Hf addition 
improved the oxidation resistance. 0.5wt% of Hf addition 
indicates the best oxidation property. These additions of trace 
element were found not to affect the interdiffusion in cross section 
observation of the diffusion couple experiments.  
 
Cyclic oxidation resistance of TMBC-1 (Rene’N5γ’-Re+Y) and 
Amdry9954 at 1150 ºC were evaluated and shown in Figure 9, 
using arc-melted specimens. TMBC-1 shows small mass increase 
at early cycles and gradual increase in mass change although mass 
change of Amdry9954 increases markedly at early cycles and 

decreases due to spallation of the scale from 40 cycle onward. 
This result proves clearly that the cyclic oxidation resistance of 
developed EQ coating is superior to that of the conventional 
CoNiCrAlY coating. 
 
TMBC-1 was deposited to various superalloys by HVOF spray to 
confirm practical advantage. Figure 10 displays cross sections of 
(a) conventional CoNiCrAlY coating and (c) TMBC-1 EQ coating 
HVOF deposited on TMS-138A after heat treated at 1100ºC for 
300h. In the conventional coating system, about 90µm of primary 
diffusion zone and 140µm of SRZ are observed at the interface as 
a matter of course. However, although TMBC-1 is not equilibrium 
phase with TMS-138A, this coating system proved that SRZ 
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Figure 9. Cyclic oxidation properties of EQ coatings and CoNiCrAlY coating at 1150 ºC. 
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formation is completely suppressed and diffusion layer is small 
enough to tolerate. This result means that Re modification and Y 
addition do not affect to the diffusion behavior and EQ coating is 
able to apply widely to several superalloys if the chemical 
potentials of the alloying elements for coating and substrate are 
close enough and consequently material and process cost will be 
reduced.  
 
Figure 11 shows Creep properties of 4th generation superalloy 
TMS-138 with various coatings investigated at 1100 ºC with 
137MPa. Plate test pieces were used and specimen thicknesses 
were varied from 1mm to 4mm. Without coating, bare materials 
showed constant strength regardless of the thickness. Aluminized, 
Pt-Aluminized and HVOF CoNiCrAlY coating showed the 
decrease of Larson-Miller Parameter (LMP) with the thickness 
decreasing. This is due to the increase of SRZ effect on the total 
cross section of the specimen. Ratio of SRZ area against the total 
cross section becomes larger in the thinner specimen, and as a 
result, the load bearing cross section is reduced. However, EQ 
coating does not form SRZ and it does not degrade the creep 
strength, so this coating showed almost similar LMP to bare 
TMS-138 in thinnest specimen. It follows from what has been 
said that EQ coating is a hopeful technique to keep the mechanical 
strength of superalloy during high temperature exposure. Thus, it 
is concluded that EQ coating is a new and practical low-cost 
technique to suppress the SRZ formation without using Pt. 
 
It is found that EQ coating is widely available to advanced 
generation Ni-base superalloys not degrading the high 
temperature strength by using equilibrium compositions. 3rd and 
more advanced generation Ni-base superalloys contain high 
amount of Re and SRZ formation is not avoidable. Recently, 
thickness of high pressure turbine blade is getting thinner and 

thinner for the improvement of cooling efficiency and decrease of 
engine weight and so this problem has been serious. EQ coating 
will be a new low-cost technique to solve this problem. And this 
technique has a benefit in a repairing process of the turbine blades. 
Usually, only one-time re-coating is possible in reuse of the 
turbine blades, because coating layer and the diffusion layer 
beneath the coating have to be removed before re-coating and the 
thickness of sound substrate become thinner. However, it is not 
necessary to remove a thick diffusion layer in EQ coating system 
because it suppresses SRZ formation. EQ coating makes possible 
cyclic re-coating and consequently will make a great contribution 
to airlines in their cost performance of engine maintenance. It 
should be reasonably concluded that EQ coating is extremely 
hopeful and innovative technique for the practical use of the 
advanced Ni-base superalloys. 
 

Conclusions 
 
The concept of SRZ-resistant EQ coating was confirmed in the 
diffusion couple experiments. The oxidation resistance of EQ 
coating for the 2nd generation superalloy has been improved by Si 
and Y addition, and its application is extended to the 4th 
generation superalloy. EQ coating for the 5th generation 
superalloy has also been developed and the possibility of the 
improvement of the oxidation resistance was investigated. Creep 
test at 1100 ºC/137MPa proved that EQ coating does not degrade 
the mechanical strength in long time high temperature exposure 
because of its structural stability.  
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