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Abstract

A new generation of powder metallurgy (P/M) Ni-Co-base
superalloys has been developed to allow rim temperatures in
turbine disk beyond 700 °C. In a series of the alloys designed,
nickel was substituted by cobalt in various proportions in some
commercial Ni-base disk superalloys and cobalt content was
ranging from 25 to 29 wt.%. Hot isostatic pressing (HIP) bars of
new design alloys were manufactured for microstructure and
property evaluation. Results from the mechanical properties
assessment indicate that some new design alloys have at least 69
°C temperature advantage in 0.2%-strain creep performance,
higher tensile strength, comparable low-cycle fatigue (LCF) life,
phase stability and oxidation resistance compared with P/M alloy
720Li.

Introduction

The operating temperature for the rim sections (near the gas flow
path) of high-pressure turbine disk has continued to increase as
the turbine inlet temperature increases, which presents a challenge
to materials researchers. To achieve a temperature capability
beyond 700 °C for use in high-pressure turbine disks of modern
aero-engines, a new generation of high-performance P/M
superalloys has been developed by a collaborative project initiated
by the NIMS and Honda R&D Co., Ltd. from April 2008 to
March 2011. The required characteristics for mechanical
properties of the P/M superalloys were high tensile strength, high
creep resistance and LCF life associated with a suitable damage
tolerance capability up to 750 °C. The objective of the initial
development phase was to design compositions based on
combining the characters of two kinds of y—y' two-phase (Ni-base
and Co-base alloys) and maintaining y—y’ two-phase structure
with high Co and Ti contents [1-5], evaluate experimental alloy
compositions in laboratory screening trials in terms of
microstructure and property assessment, and manufacture hot
isostatic pressing (HIP) bars and hot-extruded bars for additional
microstructure and property assessments. The outcome of this
collaborative project was a new kind of patented P/M superalloy
based on Ni-Co matrix and containing 46-55% v'-fraction
strengthening precipitates with an enhanced balance of tensile
strength, low-cycle fatigue (LCF) life, creep and oxidation
resistance properties [6]. The paper report herein focuses on
overall alloy development methodology including alloy design
strategy, microstructure, initial tensile and creep results of heat-
treated P/M Ni-Co-base superalloys compared with the properties
of P/M alloy 720Li, RR1000 and ME3 alloys reported [7-10].
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Materials and Experimental Procedures

The P/M superalloys were designed by an original concept
validated for TMW alloys (Tokyo Meguro or Tsukuba Material
Cast & Wrought (C&W) superalloy) [1-5], designated as TMP
(Tokyo Meguro or Tsukuba Material Powder metallurgy
superalloy) or HGN alloy (code name of Honda R&D) [6]. Figure
1 shows a schematic illustration of the alloy design concept for
Ni-Co base P/M superalloys based on a combination of Ni base

superalloys and Co base alloys both with y/y" two-phase structure.
First, an equilibrium phase calculation program with a Ni-
database7 (Thermo-Calc Software, Sweden) was used to predict
the existence of stable phases in designed TMP (HGN) alloys, and
then the microstructure and compression properties were
investigated by samples from small arc-melted ingots.
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Figure 1. Alloy design concept of Ni-Co base superalloy for
P/M disks.

The typical compositions of the alloys designed, along with the

volume fraction of y" phase, y" solvus temperature and long term
aging test results are listed in Table I and II where #400X, #500X
and #10X were designed based on the combination of Co-Ti base
alloys with RR1000 [7, 9-10], ME3 [8] and 720Li alloys,
respectively. The TMP (HGN) alloys normally have a Co content
of 25 to 29 wt.%, a Ti content of 3.9 to 6.2 wt.% and a volume
fraction of 46% to 55%. Some of the TMP (HGN) alloys designed
were used for additional screening based on the results of
investigations of microstructure stability and mechanical
properties.

Material for additional screening was prepared by the normal P/M
processing route. Alloy powders prepared by argon gas
atomization and passed through screens of -160 mesh to give
powder particle diameters of no more than about 100 um were



Table I. Nominal Compositions of P/M Alloys Tested (in Weight ercent)

Alloy Remarks Cr Co Mo W Ti Al C B Zr Ta Hf Nb Ni
#101 720Li 16.0 15.0 3.0 1.3 5.0 2.5 0.03 0.02 0.03 - - - Bal.
#102 TMW-2 14.4 21.8 2.7 1.1 6.2 2.3 0.03 0.02 0.03 - - - Bal.
#103 TMW-24 13.8 25.0 2.6 1.1 5.6 2.2 0.03 0.02 0.03 - - - Bal.
#104 TMW-4 14.9 26.2 2.8 1.1 6.1 1.9 0.02 0.02 0.03 - - - Bal.
#105 TMW-4M3 13.5 25.0 2.8 1.2 6.2 2.3 0.03 0.02 0.03 - - - Bal.
#4002 TMP (HGN) 14.3 25.0 4.8 0.0 4.0 29 0.025 0.02 0.05 2.5 0.7 - Bal.
#4003 TMP (HGN) 13.5 25.0 4.5 0.0 44 2.7 0.025 0.02 0.05 1.8 0.7 - Bal.
#4004 TMP (HGN) 13.5 25.0 4.5 0.0 44 2.7 0.025 0.02 0.05 1.8 0.35 - Bal.
#4006 TMP (HGN) 12.7 25.0 4.2 0.0 5.0 3.0 0.025 0.02 0.05 2.1 0.7 - Bal.
#5001 TMP (HGN) 11.7 25.0 34 1.9 4.2 3.2 0.025 0.02 0.05 2.2 0.35 | 0.8 | Bal
#5002 TMP (HGN) 11.7 27.0 34 1.9 44 3.2 0.025 0.02 0.05 2.2 0.35 | 0.5 | Bal
#5003 TMP (HGN) 12.5 27.0 34 1.9 4.4 3.2 0.025 0.02 0.05 2.5 0.35 | 0.5 | Bal
#5004 TMP (HGN) 12.5 25.0 4.5 2.1 44 3.2 0.025 0.02 0.05 2.5 0.35 | 0.5 | Bal
#5006 TMP (HGN) 11.7 29.0 3.7 2.1 3.9 2.9 0.025 0.02 0.05 2.1 0.35 | 0.5 | Bal

Table II. Typical Characters of P/M Alloys Tested

Ti/Al Calculated volume fraction of y' Calculated y' solvus Long time aging Corresponding
Alloy Ratio Vi T(OC) TCP phase’ C&W alloy
#101 2.0 45 1154 0 U720Li
#102 2.7 48.5 1190 0 TMW-2
#103 2.5 46 1166 0 TMW-24
#104 3.2 45 1126 0 TMW-4
#105 2.7 50.5 1180 0 TMW-4M3
#4002 14 48 1151 XX -
#4003 1.6 47 1158 0 -
#4004 1.6 46 1155 0 -
#4006 1.7 53 1186 X -
#5001 1.3 53 1174 0 -
#5002 1.4 54 1180 0 -
#5003 14 54 1176 XX -
#5004 14 55 1174 XXX -
#5006 1.3 47.5 1147 0 -

* No TCP phase (0), low amount of TCP phase (x), not acceptable for the application (xx or xxx)
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sealed into cans and subsequently formed by HIP into 150 mm in
diameter and 300 mm in length bars, and then hot-extruded into
25 mm in diameter bars to reduce the effect of prior particle
boundaries (PPBs) phase in P/M products as shown in Figure 2.
The grain sizes varied from 5 pum to 30 pm in the as-HIPed
samples, and were minimized to about 3 pm to 5 pm in the outer
area of the extruded bar while the PPBs were reduced after hot
extrusion as shown in Figure 3. The tensile and creep specimens
were taken from the HIP bar, and the LCF specimens were taken
from the outer area of the extruded bars. Then, all samples were
heat treated at a solution temperature from 1100~1150 °C for 4
h then air cooled, primary aged at 650 °C for 24 h then air cooled
and secondary aged at 760 °C for 16 h then air cooled.

Prior to mechanical testing, the initial microstructures of the heat-
treated HIP and extruded specimens were characterized by the
analysis techniques of optical microscope and a field emission
scanning electron microscope (FE-SEM, JEOL JSM-7001F) with
electron backscatter diffraction (EBSD). The specimens were
prepared by metallographic polishing. For optical microscope

um
Macx, 143696, Min.:30272, Ave.:33134

of microstructure in (a) HIP sample and

observation, the polished specimens were etched in a solution of
Kalling reagent (25 g CuCl, + 50 ml HCI + 50 ml H,O). EBSD
was carried out in the FE-SEM operating at 15 kV using the TSL
OIM data collection program. The average value of grain size and
ASTM grain size number of grain boundary excluding annealing
twin boundary were measured from the EBSD data using the TSL
OIM analysis program.

Tensile specimens were tested at temperatures ranging from room
temperature to 800 °C. Constant load tensile creep rupture tests
were conducted at 650 °C and 830 MPa, 725 °C and 630 MPa,
and 760 °C and 480 MPa. Additionally, LCF test specimens with
a gauge section of 4 mm in diameter and 13.5 mm in length were
cut from the heat-treated extruded bars. The LCF tests were
conducted at 650 °C with a triangle waveform and total strain
range Ag; of 0.8, 1.0 and 1.2% under strain control conditions (Re;
= €min/€max = 0). The fracture initiation site on the fracture surface
after LCF tests was identified using FE-SEM with energy
dispersive x-ray spectroscopy (EDS).

BKa b—— 10 Ka  +——i (0 un

*Yellow and Green=high concentration; Blue=low concentration; Black = no concentration
Figure 4. Backscattered electron image (left) and images from electron probe micro-analyzes of the HIP #5004 alloy exposed at 850 °C for 5000

hours.
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For the thermal phase stability and isothermal oxidation tests, the
heat-treated HIP bars were cut into cylindrical shape 5 mm in
height and 9 mm in diameter. Their surfaces were finally polished
by #1000 SiC paper. The isothermal oxidation tests were
conducted at 650 °C, 750 °C and 850 °C up to 5000 hours. The
weight of the sample was measured after oxidation. The phase
constitutions and the microstructure stability of the samples after
thermal exposure at 650 °C, 750 °C and 850 °C from 1000 to
5000 hours were investigated by electron probe micro-analyzer
(EPMA, Shimadzu-1610).

Results and Discussion

Microstructure and Thermal Stability

The compositions and microstructure investigation results of the
alloys tested (#10X, #400X and #500X) and subjected to heat
treatment and thermal exposure are indicated in Table I and Table
II. Ten of the alloys tested had only a y/y' two-phase structure
with no topologically closed packed (TCP) phases such as p and
cphase (0 in Table II) after heat treatment and long-term
exposure at high temperature (5000 hours at 650 °C, 750 °C and
850 °C). The alloy #4006 had low amounts of TCP phases (x in

Table II), and the alloys #4002, #5003 and #5004 had
unacceptable amounts of TCP phases (xx or xxx in Table II) for
the disk applications.

Figure 4 shows the images and compositions measured by EPMA
in the HIP #5004 alloy exposed at 850 °C for 5000 hours. In the
HIP #5004 alloy, (Mo, W)«(B, C), phase and (Cr, Mo),(Ni, Co),
phase (o-phase) existed at grain boundaries and within the grains

in addition to the y and y'phases.

Tensile Properties

Tensile tests of the heat-treated HIP alloys were conducted from
room temperature (20 °C) to 800 °C. The temperature dependence
of the ultimate tensile strength (UTS) and elongation (EL) is
shown in Figure 5. At room temperature, the UTS value of P/M
720Li (#101) alloy was 1634 MPa and all other designed alloys
showed UTS values greater than 1700 MPa. At 800 °C, the UTS
values of the alloys designed were about 100 MPa higher than that
of P/M 720Li (#101) alloy and are comparable with the value of
MES3 from a supersolvus solution heat treatment [8]. Alloy #5004
had better combined tensile properties compared with P/M 720Li

(#101), ME3 and Alloy #5006, due to its higher y’ volume fraction.
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Figure 5. Temperature dependence of ultimate tensile strength and elongation of the heat-treated HIP alloys prepared via P/M
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Creep-Rupture Properties

Tensile creep tests of heat-treated HIP alloys with 10 um average
grain size have been performed in air under the load range from
480 MPa to 830 MPa and in the temperature range from 650 °C to
760 °C where the alloys are to be used. The results from these
tests are shown in Figure 6. The temperature capability for 0.2%-

760

creep strain as estimated from the Larson Miller Parameter (LMP)
by use of ¢ = 20 showed a 100-hour life increase with the addition
of Co-CosTi, such as #105 corresponding to TMW-4M3 [1-5],
#5002 and #5006 alloys (Figure 6(a)). The temperature capability
of alloys #105, #5002 and #5006 was estimated to be 743 °C, 741
°C and 740 °C, which were 72 °C, 70 °C and 69 °C higher than
that of P/M 720Li (#101), respectively (Figure 6(b)). Furthermore,
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some TMP (HGN) alloys have better creep resistance than that of
ME3 above 600 MPa, but lower than that of ME3 below 600 MPa
because TMP alloys are subsolvus solution heat treated and have
finer grain size to that shown by ME3 alloy, heat-treated at a
supersolvus temperature (G7.1, ASTM grain size number) [8]. It
was reported that the creep life of TMW-4M3 significantly
improves with increasing grain size in the lower stress region [4].
Therefore, the optimization of microstructure including factors
such as primary, secondary and tertiary y' precipitates together
with coarsening the grain size may improve the creep properties
of TMP (HGN) alloys.

LCF Properties

The LCF life of the extruded P/M alloys at 650 °C is shown as a
function of strain range in Figure 7a. The data plots attached with
asterisks indicate the specimens fractured from embedded flaw.
Meanwhile, average LCF life of conventional C&W U720Li [4]
obtained at the similar test temperature range was used as a
comparison. For all of the P/M alloys tested, the LCF life was
almost the same and some designed alloys had slightly shorter
values than the average life for C&W U720Li. Furthermore,
amongst the tested alloys, the LCF life of #5002 shows the best
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value compared with the other designed alloys. For most of
#500X alloys, fatigue failures tended to occur at internal crack
initiation sites (embedded flaw in Figure 7b) for low strains (de,=
0.8%). The embedded flaws identified by EDS analysis were the
ceramic inclusions mainly composed of metals Al and O in #400X
and #500X HIP bars. But, similar ceramic inclusions were not
observed in #10X alloys.

Oxidation resistance

For applications beyond 700 °C, good oxidation resistance of
turbine disk superalloys is also required. Isothermal oxidation
tests of heat-treated HIP specimens were carried out at 650 °C,
750 °C and 850 °C up to 5000 hours. For all test temperatures and
all developed alloys, weight gain in mg/cm?® Aw, followed the

s - )
-l (a) —O--:IOE(,ZOLU
<> #Z105
@ #4003
-3+
< @ =5002
e ® #5004
St ., A #3006
. . _ @ RR1000[9]
g 0
— ®.
9 | e
®
A
11 b o O
@.
-13 §
.15 . .
8.0 9.0 10.0 11.0 12.0
Oxidation temperature, 1/T [104/K]
0.001
:
- |
S = 00008
s E
Zz2 9
S
< E’jfoocro
£ £
- T 0.0004
_Sl g Candidate
ﬁ f:ra N § alloys
= " 00002 TN N
N N NN
N N N D
N O O > > OO >
QIO S S QQ@ P F,F.S
S AR X *‘s&‘&%’&‘ 3030 P
L A
RN
%\
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Wagner’s parabolic growth model given by:
Aw? = kpt )

where k, is a parabolic rate constant in mg*/cm*h and ¢ is a
exposure time in hours. Results suggest that oxide growth follows
the diffusion-controlled growth for the oxidation of the tested
alloys. Thus, the temperature dependence on k, was evaluated by
using Arrhenius plot given by:

ky = koexp (%) 2)
where k, is a frequency factor, £, is the activation energy for
oxidation, R is a gas constant and 7 is a exposure temperature. As
shown in Figure 8a, the Ink, is proportional to 1/T with almost the
same slopes for all alloys tested and in good agreement with the
equation (2), where E, value varied from 284 kJ/mol to 386
kJ/mol and average E, value for all P/M alloys tested was 326
kJ/mol. The average value is almost the same or slightly higher
than that for conventional Ni-base disk superalloy [10]. Figure 8b
shows the k, at 750 °C for P/M alloys tested. For comparison, the
reported data for RR1000 [9] is also shown alongside. As shown
in the Figure 8b, #5002 and #5006 alloys exhibit the lowest £,
indicating excellent oxidation resistance.

Conclusions

A new kind of P/M disk superalloy, named TMP (HGN) alloy,
was proposed and developed in collaborative research between
NIMS and HONDA R&D Co., Ltd.. The evaluation of mechanical
properties from HIPed and hot-extruded bars indicate that #5002
(named TMP5002 or HGN200) and #5006 (named TMP5006 or
HGN300) alloys exhibit superior thermal phase stability,
oxidation resistance and 100 MPa higher ultimate tensile strength
compared with P/M 720Li up to 800 °C. Meanwhile, TMP5002
(HGN200) and TMP5006 (HGN300) provide at least 69 °C
temperature advantage in 0.2%-strain creep performance
compared with the P/M 720Li alloy. These results indicate that
some TMP (HGN) alloys are good candidates for turbine disk
applications beyond 700 °C.
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