MATERIALS DESIGN

COMPUTATIONAL MATERIALS DISCOVERY AND OPTIMIZATION

This symposium will cover recent methodological developments and applications at the frontier of computational materials science and materials informatics, ranging from quantum-level prediction to macro-scale property optimization. The goal is to cover basic research topics in an interdisciplinary approach, which connects theory and experiment, with a view towards materials applications. Of particular interest is computational and theoretical work that features a strong connection to experiment.

Topics include:

- Optimization algorithm to search the structure-composition design space
- Materials informatics approaches such as data mining, genetic algorithms, cluster expansions, and machine-learning for structures, properties, and processing
- Innovations that improve accuracy and efficiency of computational materials design
- Methods and applications for electrochemical interfaces
- Computational discovery and design of novel materials, such as 2D materials and materials for energy technologies

Six sessions are planned:

- Materials informatics methods
- Computational methods for materials discovery, characterization, and optimization
- 2D materials and materials epitaxy
- Materials Surfaces, interfaces, and electrochemistry
- Materials for energy technologies
- Materials for electronic device applications and energy technologies

ORGANIZERS
Richard Hennig, University of Florida, USA
Houlong L. Zhuang, Arizona State University, USA
Arunima Singh, Lawrence Berkeley National Laboratory, USA
Eric Homer, Brigham Young University, USA
Francesca Tavazza, National Institute of Standards and Technology, USA
Kristin Perrson, University of California at Berkeley, USA

SPONSORS
TMS Materials Processing & Manufacturing Division
TMS Computational Materials Science and Engineering Committee