Additive Manufacturing of Metals: Applications of Solidification Fundamentals

Additive manufacturing is a disruptive technology, offering increased part complexity, short lead times, and opportunities for local microstructure control. Microstructure and defect development in AM processes is influenced by solidification and melt pool dynamics, but currently the application of fundamental solidification theories to AM process conditions has not been fully explored. Furthermore, increased demand for customized material properties and localized microstructure control will inevitably require a detailed understanding of solidification in these processes.

The goal of this symposium is to highlight research in metal additive manufacturing that applies fundamental solidification theory to understand and solve contemporary processing challenges. This symposium will inform the solidification community about the unique characteristics of AM and guide the AM community to recognize the parallels that exist in the welding and solidification literature. Both experimental and modeling submissions are encouraged, especially in which modeling or theory is connected to experimental results or in-situ characterization to rationalize process challenges and propose novel solutions.

ORGANIZERS
Alex Plotkowski, Oak Ridge National Laboratory, USA
Lang Yuan, GE Global Research, USA
Kevin Chaput, Materials and Manufacturing Directorate, USA
Mohsen Asle Zaeem, Colorado School of Mines, USA
Sudarsanam Babu, The University of Tennessee, Knoxville, USA