

NUCLEAR MATERIALS

MECHANICAL BEHAVIOR OF NUCLEAR REACTOR COMPONENTS

Current and future generation nuclear reactors require improved structural materials that improve efficiency during in-service conditions, allow for long reactor lifetimes, and increase safety during accidents. Given the increasingly large number of reactor design being considered (e.g. fusion, molten salt, LWRs, etc.), a series of distinct material concepts have been proposed to address these needs. Effects of reactor environments on mechanical behavior will be a key component to predicting strength and performance of materials in the aforementioned circumstances.

This symposium aims to take a closer look at the mechanical behavior of reactor components across length scales. With recent advancements and increased use of in-situ techniques, more is known about irradiation effects on strength than ever before. Simultaneously, ex-situ techniques are critical to probe component-sized parts, and validate the use of a material for inclusion within a reactor. Furthermore, synergy with materials modeling is advancing the prediction of material performance under normal and accident conditions, as well as reactor lifetimes.

Topics of interest include, but are not limited to:

- Mechanical behavior testing, including tension, compression, bend, bulge, creep, fatigue, and fracture
- Effects of environment on strength, including dose, dose rate, temperature, and corrosion
- Hardness testing, including nanohardness and microhardness
- Development of microstructure sensitive material strength models
- Modeling and simulation of irradiation defect interactions during mechanical testing
- Macroscopic component modeling for full scale performance
- In-situ mechanical testing, including micromechanical and nanomechanical compression and tension
- Novel techniques to probe material strength under reactor conditions

ORGANIZERS

Clarissa Yablinsky, Los Alamos National Laboratory, USA Assel Aitkaliyeva, University of Florida, USA Eda Aydogan, Sabanci University, Turkey Laurent Capolungo, Los Alamos National Laboratory, USA

SYMPOSIUM SPONSORS

TMS Materials Processing & Manufacturing Division TMS Structural Materials Division TMS Nanomechanical Materials Behavior Committee TMS Nuclear Materials Committee