ADDITIVE MANUFACTURING

Additive Manufacturing Fatigue and Fracture: Towards Rapid Qualification

The current understanding of fatigue and fracture behavior of additive manufacturing metals is limited and must be expanded before widespread use in fatigue and fracture critical applications can be fully realized. It is the purpose of this symposium to move toward that expanded understanding by providing a forum to present research results from investigations into fatigue and fracture behavior of additive manufacturing of metals.

Topics of interest include (but are not limited to):
- Microstructure-based Fatigue Studies on Additive-Manufactured Materials (JOINT SESSION with Fatigue in Materials Symposium)
- Fatigue Modeling and Prediction
- Critical Flaw Size Investigations
- Data Science Techniques for Fatigue and Fracture
- Effects of Surface Roughness, Residual Stress, and Environment on Fatigue and Fracture
- Processing and Structure-Effects on Macroscale Fatigue and Fracture (see details below)

Processing-structure-property-performance relationships pertinent to this symposium must focus on fatigue and fracture and can include the following. Processing includes machine settings (e.g. layer thickness), melt parameters (e.g. energy density, scan strategy), post-processing (e.g. heat treatment, surface treatment), and feedstock variables (e.g. flowability, spreadability, particle size distribution) that can directly impact fatigue and fracture performance of parts.

Structure includes crystallographic microstructure (e.g. texture, phase content, grain size/morphology), internal defects (e.g. pores, inclusions), external defects (e.g. surface roughness), residual stress, and chemistry. Properties include all macroscopic fatigue and fracture properties (e.g. high-cycle fatigue, low-cycle fatigue, linear elastic fracture toughness (Klc), elastic-plastic fracture toughness (J-int), fatigue crack growth rate, and impact toughness (Charpy)), but do NOT include small-scale mechanical property assessment. Performance includes any end-product testing.

ORGANIZERS
Nik Hrabe, National Institute of Standards and Technology, USA
Nima Shamsaei, Auburn University, USA
John Lewandowski, Case Western Reserve University, USA
Mohsen Seifi, ASTM International/Case Western Reserve University, USA
Steve Daniewicz, University of Alabama, USA

SYMPOSIUM SPONSORS
TMS Structural Materials Division
TMS Additive Manufacturing Committee
TMS Mechanical Behavior of Materials Committee